Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Ulepszona, bezczujnikowa, nieliniowa strategia sterowania silnikiem indukcyjnym z podwójnym zasilaniem, oparta na obserwatorze trybu ślizgowego
Języki publikacji
Abstrakty
This paper presents a sensorless nonlinear control strategy for a doubly fed induction motor (DFIM) based on a combination of backstepping control (BS) and sliding mode observer (SMO) approaches. The main objective is to enhance the performance of field-oriented control (FOC) for DFIM by improving speed control performance, reducing electromagnetic torque ripple and improving stator current distortion, and achieving effective decoupling between torque and stator flux. The stability analysis of the proposed control strategy is conducted using Lyapunov theory. Furthermore, a sliding mode observer is designed to estimate the load torque and motor speed without needing additional sensors. The effectiveness of the proposed control strategy is validated by several simulation tests using Matlab/Simulink software. The results of the first test demonstrate remarkable improvements in response and steady state error of the speed control. Furthermore, the robustness of the designed control strategy is assessed, exhibiting superior performance in speed and torque control, as well as robustness against load disturbances and parameter variations. These findings highlight the potential of the proposed sensorless BS control strategy, with the sliding mode observer, as a promising solution for sensorless control of DFIM in diverse industrial applications.
W artykule przedstawiono bezczujnikową strategię nieliniowego sterowania silnikiem indukcyjnym z podwójnym zasilaniem (DFIM), opartą na połączeniu podejścia ze sterowaniem krokowym (BS) i obserwatorem trybu ślizgowego (SMO). Głównym celem jest zwiększenie wydajności sterowania zorientowanego na pole (FOC) dla DFIM poprzez poprawę wydajności sterowania prędkością, zmniejszenie tętnienia elektromagnetycznego momentu obrotowego i poprawę zniekształceń prądu stojana oraz osiągnięcie skutecznego oddzielenia momentu obrotowego od strumienia stojana. Analizę stabilności zaproponowanej strategii sterowania przeprowadzono z wykorzystaniem teorii Lapunowa. Co więcej, obserwator trybu ślizgowego ma za zadanie szacować moment obciążenia i prędkość silnika bez konieczności stosowania dodatkowych czujników. Skuteczność zaproponowanej strategii sterowania została potwierdzona szeregiem testów symulacyjnych z wykorzystaniem oprogramowania Matlab/Simulink. Wyniki pierwszego testu wykazują niezwykłą poprawę reakcji i błędu stanu ustalonego kontroli prędkości. Ponadto oceniana jest solidność zaprojektowanej strategii sterowania, wykazująca doskonałą wydajność w zakresie sterowania prędkością i momentem obrotowym, a także odporność na zakłócenia obciążenia i zmiany parametrów. Odkrycia te podkreślają potencjał proponowanej bezczujnikowej strategii sterowania BS z obserwatorem w trybie ślizgowym jako obiecującego rozwiązania do bezczujnikowego sterowania DFIM w różnorodnych zastosowaniach przemysłowych.
Wydawca
Czasopismo
Rocznik
Tom
Strony
129--135
Opis fizyczny
Bibliogr. 32 poz., rys.
Twórcy
autor
- LEVRES Laboratory, Department of Electrical Engineering, Faculty of Technology, University of El Oued, 39000 El Oued, Algeria
autor
- LEVRES Laboratory, Department of Electrical Engineering, Faculty of Technology, University of El Oued, 39000 El Oued, Algeria
autor
- Laboratory of Applied Automation and Industrial Diagnosis, Ziane Achour University, Djelfa 17000, Algeria
autor
- Avancé (LABCAV), Department of Electronics and Telecommunications, Université 8 Mai 1945 Guelma, Guelma, Algeria
Bibliografia
- [1] K. Saad, K. Abdellah, H. Ahmed, and A. Iqbal, “Investigation on SVM-Backstepping sensorless control of five-phase open-end winding induction motor based on model reference adaptive system and parameter estimation,” Engineering Science and Technology, an International Journal, vol. 22, no. 4, pp. 1013– 1026, 2019.
- [2] H. Echeikh, R. Trabelsi, A. Iqbal, and M. F. Mimouni, “Adaptive direct torque control using Luenberger-sliding mode observer for online stator resistance estimation for five-phase induction motor drives,” Electr Eng, vol. 100, no. 3, pp. 1639– 1649, Sep. 2018.
- [3] S. Drid, M. Nait-Said, and M. Tadjine, “Double flux oriented control for the doubly fed induction motor,” Electric Power Components and Systems, vol. 33, no. 10, pp. 1081–1095, 2005.
- [4] M. Zerzeri and A. Khedher, “Optimal speed–torque control of doubly-fed induction motors: Analytical and graphical analysis,” Computers & Electrical Engineering, vol. 93, p. 107258, 2021.
- [5] Y. Azzoug, M. Sahraoui, R. Pusca, T. Ameid, R. Romary, and A. J. M. Cardoso, “High-performance vector control without AC phase current sensors for induction motor drives: Simulation and real-time implementation,” ISA Transactions, vol. 109, pp. 295–306, Mar. 2021, doi: 10.1016/j.isatra.2020.09.021.
- [6] M. Mounira and C. Djamila, “A new approach of robust speed sensorless control of doubly fed induction motor fed by photovoltaic solar panel,” IJPEDS, vol. 14, no. 1, p. 153, Mar. 2023, doi: 10.11591/ijpeds.v14.i1.pp153-166.
- [7] S. Drid, M. Nait-Said, and M. Tadjine, “Double flux oriented control for the doubly fed induction motor,” Electric Power Components and Systems, vol. 33, no. 10, pp. 1081–1095, 2005.
- [8] I. Benlaloui, S. Drid, L. Chrifi-Alaoui, and M. Ouriagli, “Implementation of a New MRAS Speed Sensorless Vector Control of Induction Machine,” IEEE Trans. Energy Convers., vol. 30, no. 2, pp. 588–595, Jun. 2015.
- [9] Y. Bekakra and D. B. Attous, “Fuzzy sliding mode controller for doubly fed induction motor speed control,” Journal of Fundamental and Applied Sciences, vol. 2, no. 2, pp. 272–287, 2010.
- [10] Y. Bekakra and D. B. Attous, “A sliding mode speed and flux control of a doubly fed induction machine,” presented at the 2009 International Conference on Electrical and Electronics Engineering-ELECO 2009, IEEE, 2009, p. I–174.
- [11] C. Djamila and Y. Miloud, “High performance of sensorless sliding mode control of doubly fed induction motor associated with two multilevel inverters fed by VFDPC_SVM rectifier,” Indonesian Journal of Electrical Engineering and Informatics (IJEEI), vol. 8, no. 2, pp. 242–255, 2020.
- [12] Y. Bekakra, Y. Labbi, D. Ben Attous, and O. P. Malik, “Rooted Tree Optimization Algorithm to Improve DTC Response of DFIM,” J. Electr. Eng. Technol., vol. 16, no. 5, pp. 2463–2483, Sep. 2021.
- [13] T. Ameid, A. Menacer, H. Talhaoui, A. Ammar, and Y. Azzoug, “Sensorless speed estimation and backstepping control of induction motor drive using model reference adaptive system,” presented at the 2017 5th International Conference on Electrical Engineering-Boumerdes (ICEE-B), IEEE, 2017, pp. 1–6.
- [14] D. Traoré, J. de Leon, and A. Glumineau, “Sensorless induction motor adaptive observer-backstepping controller: experimental robustness tests on low frequencies benchmark,” IET control theory & applications, vol. 4, no. 10, pp. 1989–2002, 2010.
- [15] M. Taoussi, M. Karim, D. Hammoumi, C. El Bekkali, B. Bossoufi, and N. El Ouanjli, “Comparative study between Backstepping adaptive and Field-oriented control of the DFIG applied to wind turbines,” presented at the 2017 International Conference on Advanced Technologies for Signal and Image Processing (ATSIP), IEEE, 2017, pp. 1–6.
- [16] N. El Ouanjli et al., “Real-time implementation in dSPACE of DTC-backstepping for a doubly fed induction motor,” The European Physical Journal Plus, vol. 134, pp. 1–14, 2019.
- [17] K. Kroics and H. Hafezi, “An Accurate Mechanical Overload Detection for Induction Motor via Sensorless Load Torque Estimation,” in 2021 IEEE 62nd International Scientific Conference on Power and Electrical Engineering of Riga Technical University (RTUCON), Riga, Latvia: IEEE, Nov. 2021, pp. 1–5.
- [18] A. Chibah, M. Menaa, K. Yazid, A. Boufertella, H. Djadi, and M. Boudour, “A new sensorless control of doubly fed induction motor based on extended complex kalman filter,” presented at the 2018 International Conference on Electrical Sciences and Technologies in Maghreb (CISTEM), IEEE, 2018, pp. 1–6.
- [19] T. Ameid, A. Menacer, H. Talhaoui, A. Ammar, and Y. Azzoug, “Sensorless speed estimation and backstepping control of induction motor drive using model reference adaptive system,” presented at the 2017 5th International Conference on Electrical Engineering-Boumerdes (ICEE-B), IEEE, 2017, pp. 1–6.
- [20] H. Majid and H. Abouaïssa, “Comparative Study of a Super Twisting Sliding Mode Observer and an Extended Kalman Filter for a Freeway Traffic System,” Cybernetics and Information Technologies, vol. 15, no. 2, pp. 141–158, Jun. 2015.
- [21] A. Ammar, A. Bourek, and A. Benakcha, “Sensorless SVM direct torque control for induction motor drive using sliding mode observers,” Journal of Control, Automation and Electrical Systems, vol. 28, no. 2, pp. 189–202, 2017.
- [22] S. A. Davari, D. A. Khaburi, F. Wang, and R. Kennel, “Robust sensorless predictive control of induction motors with sliding mode voltage model observer,” Turkish Journal of Electrical Engineering and Computer Sciences, vol. 21, no. 6, pp. 1539– 1552, 2013.
- [23] N. K. M’Sirdi, A. Rabhi, L. Fridman, J. Davila, and Y. Delanne, “Second order sliding-mode observer for estimation of vehicle dynamic parameters,” IJVD, vol. 48, no. 3/4, p. 190, 2008.
- [24] Zhang, Y., Yin, Z., Liu, J. and Tong, X., 2018. Design and implementation of an adaptive sliding-mode observer for sensorless vector controlled induction machine drives. Journal of Electrical Engineering & Technology, 13(3), pp.1304-1316.
- [25] P. Georgieva and S. F. de Azevedo, “Neural networks for model predictive control,” presented at the The 2011 International Joint Conference on Neural Networks, IEEE, 2011, pp. 111–118.
- [26] H. Benderradji, A. Makouf, and L. Chrifi-Alaoui, “Field-oriented control using sliding mode linearization technique for induction motor,” in 18th Mediterranean Conference on Control and Automation, MED’10, Marrakech, Morocco: IEEE, Jun. 2010, pp. 1133–1138.
- [27] de Leon, J., Souleiman, I., Glumineau, A. and Schreier, G., 2001. On nonlinear equivalence and backstepping observer. Kybernetika, 37(5), pp.521-546.
- [28] J. Soltani, A. F. Payam, and M. A. Abbasian, “A speed sensorless sliding-mode controller for doubly-fed induction machine drives with adaptive backstepping observer,” presented at the 2006 IEEE International Conference on Industrial Technology, IEEE, 2006, pp. 2725–2730.
- [29] A. Ammar, “Second-order sliding mode-direct torque control and load torque estimation for sensorless model reference adaptive system–based induction machine,” Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, vol. 235, no. 1, pp. 15–29, Jan. 2021.
- [30] G. Bartolini, A. Damiano, G. Gatto, I. Marongiu, A. Pisano, and E. Usai, “Robust speed and torque estimation in electrical drives by second-order sliding modes,” IEEE Trans. Contr. Syst. Technol., vol. 11, no. 1, pp. 84–90, Jan. 2003.
- [31] L. Aarniovuori, H. Karkkainen, M. Niemela, P. Lindh, and J. Pyrhonen, “Induction motor torque estimation accuracy using motor terminal variables,” in 2017 IEEE International Electric Machines and Drives Conference (IEMDC), Miami, FL: IEEE, May 2017, pp. 1–7.
- [32] A. Goedtel, I. Nunes Da Silva, P. J. Amaral Serni, and E. Avolio, “Load torque estimation in induction motors using artificial neural networks,” in Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN’02 (Cat. No.02CH37290), Honolulu, HI, USA: IEEE, 2002, pp. 1379–1384.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki i promocja sportu (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-da9c17f5-1d81-48f7-91b8-3ee6e846b0b1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.