PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Production of High-Purity Tantalum Metal Powder for Capacitors Using Self-Propagating High-Temperature Synthesis

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, high-purity tantalum metal powder was manufactured via self-propagating high-temperature synthesis. During the process, Ta2O5 and Mg were used as the raw material powder and the reducing agent, respectively, and given that combustion rate and reaction temperature are important factors that influence the success of this process, these factors were controlled by adding an excessive mass of the reducing agent (Mg) i.e., above the chemical equivalent, rather than by using a separate diluent. It was confirmed that Ta metal powder manufactured after the process was ultimately manufactured 99.98% high purity Ta metal powder with 0.5 μm particle size. Thus, it was observed that adding the reducing reagent in excess favored the manufacture of high-purity Ta powder that can be applied in capacitors.
Twórcy
  • Korea Institute for Rare Metals, Korea Institute of Industrial Technology, 7-47 Songdo-dong Yeonsoo-gu, Incheon 406-840, Korea
  • Inha University, Department of Advanced Materials Engineering, 100 Inharo, Nam-gu, Incheon 22212, Korea
autor
  • Korea Institute for Rare Metals, Korea Institute of Industrial Technology, 7-47 Songdo-dong Yeonsoo-gu, Incheon 406-840, Korea
  • Inha University, Department of Advanced Materials Engineering, 100 Inharo, Nam-gu, Incheon 22212, Korea
  • Korea Institute for Rare Metals, Korea Institute of Industrial Technology, 7-47 Songdo-dong Yeonsoo-gu, Incheon 406-840, Korea
  • Inha University, Department of Advanced Materials Engineering, 100 Inharo, Nam-gu, Incheon 22212, Korea
autor
  • Korea Institute for Rare Metals, Korea Institute of Industrial Technology, 7-47 Songdo-dong Yeonsoo-gu, Incheon 406-840, Korea
  • Inha University, Department of Advanced Materials Engineering, 100 Inharo, Nam-gu, Incheon 22212, Korea
  • Korea Institute for Rare Metals, Korea Institute of Industrial Technology, 7-47 Songdo-dong Yeonsoo-gu, Incheon 406-840, Korea
  • Inha University, Department of Advanced Materials Engineering, 100 Inharo, Nam-gu, Incheon 22212, Korea
  • Korea Institute for Rare Metals, Korea Institute of Industrial Technology, 7-47 Songdo-dong Yeonsoo-gu, Incheon 406-840, Korea
  • Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, Republic of Korea
autor
  • Korea Institute for Rare Metals, Korea Institute of Industrial Technology, 7-47 Songdo-dong Yeonsoo-gu, Incheon 406-840, Korea
  • Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, Republic of Korea
autor
  • Inha University, Department of Advanced Materials Engineering, 100 Inharo, Nam-gu, Incheon 22212, Korea
autor
  • Korea Institute for Rare Metals, Korea Institute of Industrial Technology, 7-47 Songdo-dong Yeonsoo-gu, Incheon 406-840, Korea
  • Korea Institute for Rare Metals, Korea Institute of Industrial Technology, 7-47 Songdo-dong Yeonsoo-gu, Incheon 406-840, Korea
Bibliografia
  • [1] S.M. Hwang, J.P. Wang, D.W. Lee, J. Met. 9, 205 (2019).
  • [2] H.I. Won, H.H. Nersisyan, C.W. Won, J. Alloys Compd. 478, 716-720 (2009)
  • [3] H.H. Nersisyan, H.S. Ryu, J.H. Lee, H.Y. Suh, H.I. Won, Combust. Flame 219, 136-146 (2020).
  • [4] T. Iuchi, K.S. Ono, Repts Res-Instt. Toboko Uni., Ser. A13, 456 (1961).
  • [5] B. Yuan, H. Okabe, J. Alloys Compd. 443, 71-82 (2007).
  • [6] H. Okabe, N. Sato, Y. Mitsuda, S. Ono, Mater. Trans. 44, 2646-2653 (2003).
  • [7] H. Okabe, S. Iwata, M. Imagunbai, Y. Mitsuda, M. Maeda, Isij Int. 44, 285-293 (2004).
  • [8] S.Y. Lee, S.I. Lee, C.W. Won, J. Kor. Inst. Met. & Mater. 47, 338-343 (2009).
  • [9] J.J. Sim, S.H. Choi, J.H. Park, I.K. Park, J.H. Lim, K.T. Park, J. Powder Metall. Inst. 25, 251-256 (2018).
  • [10] A.P. Hardt, P.V. Phung, Combustion. Flame 21, 77 (1973).
  • [11] A.P. Hardt, R.W. Holsinger, Combustion. Flame 21, 91 (1973).
  • [12] A.G. Merzhanov, I.P. Borovinskaya, Dokl. Akad. Nauk. SSSR (Chem.) 204, 429 (1972).
  • [13] V.M. Orlov, M.V. Kryzhanov, Metally, 2010, 384-388, (2009).
  • [14] HSC Chemistry Software Ver. 8.0, Outotec. 2014. Available online: https://www.outotec.com (accessed on 20 November 2018).
  • [15] S.H. Choi, J.J. Sim, J.H. Lim, S.J. Seo, D.W. Kim, S.K. Hyun, K.T. Park, J. Met. 9, 169 (2019).
  • [16] H.H. Nersisyan, J.H. Lee, S.I. Lee, C.W. Won, Combustion. Flame 135, 539-545 (2003).
  • [17] J.S. Yoon, S.H. Hwang, B.I. Kim, J. Kor. Inst. Surf. Eng. 42, 227-231 (2009).
  • [18] S. Luidold, R. Ressel, Proceedings of EMC 1, 1-15 (2009).
  • [19] T. Hawa, M.R. Zachaeiah, J. Aerosol Sci. 37, 1-15 (2006).
  • [20] Y. Tian, W. Jiao, P. Liu, S. Song, Z. Lu, A. Hirata, M. Chen, Nat. Commun. 10, 5249 (2019).
  • [21] V.B. Storozhev, J. Aerosol Sci. 34, 179-185 (2001).
Uwagi
1. This work was supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea (No. 20195210100070, The development of upcycling technology for low-grade tantalum waste resources using dry and wet integrated process) and Korea Evaluation Institute of Industrial Technology (KEIT) and the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea (No. 20011286, The development of 4N5 grade ultrahigh purity molybdenum with a high melting point by smelting and refining technology for semiconductor applications from the northern country resources).
2. Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-da9bee62-dd26-46c7-bbfd-7d7cbe48e62d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.