Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
DOI
Warianty tytułu
Języki publikacji
Abstrakty
The β-phase Titanium (β-Ti) alloys have been under the spotlight in the recent past for their use as biomedical prosthetic materials owing to their excellent properties such as low elastic modulus, high corrosion resistance and tensile strength. Recently, Niobium (Nb) has gained a lot of attention as a β-phase stabilizing element in Ti alloys to replace Vanadium (V) due to its excellent solubility in Ti, low elastic modulus and biocompatibility. In this work, low cost Ti-20Nb binary alloy has been fabricated via powder metallurgy procedures. The blended powder mixtures of Ti and Nb were sintered at 900°C for 20 mins by the Spark Plasma Sintering (SPS) with an applied uniaxial pressure of 40 MPa. The heating rate was fixed at 50°C/min. The sintered alloy was subject to heat treatments at 1200°C in vacuum condition for various time durations. The characterizations of microstructure obtained during this process were done using FE-SEM, EDS and XRD. By increasing heat treatment time, as understood, the volume of residual Nb particles was decreased resulting in accelerated diffusion of Nb into Ti. Micro hardness of the alloy increased from 340 to 355 HV with the increase in β phase content from 30 to 45%. The resultant alloys had relatively high densities and homogenized microstructures of dispersed lamellar β grains in α matrix.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
1429--1432
Opis fizyczny
Bibliogr. 12 poz., rys., wykr.
Twórcy
autor
- Korea Institute for Rare Metals, Korea Institute of Industrial Technology, Incheon, Korea
- University of Sciencea and Technology, Daejeon, Korea
autor
- Korea Institute for Rare Metals, Korea Institute of Industrial Technology, Incheon, Korea
- University of Sciencea and Technology, Daejeon, Korea
autor
- University of Sciencea and Technology, Daejeon, Korea
autor
- Korea Institute for Rare Metals, Korea Institute of Industrial Technology, Incheon, Korea
- University of Sciencea and Technology, Daejeon, Korea
autor
- Korea Institute for Rare Metals, Korea Institute of Industrial Technology, Incheon, Korea
autor
- Korea Institute for Rare Metals, Korea Institute of Industrial Technology, Incheon, Korea
autor
- Korea Institute for Rare Metals, Korea Institute of Industrial Technology, Incheon, Korea
- University of Sciencea and Technology, Daejeon, Korea
Bibliografia
- [1] Aerospace workshop planning session-summary report, Oak Ridge National Laboratory, (2010).
- [2] F. H. Froes, D. Eylon, International Material Reviews 35, 162-184 (1990).
- [3] C. Leyens, M. Peters (Eds.), Titanium and Titanium Alloys: Fundamentals and Applications, Weinheim, Wiley-VCH Verlag (2003).
- [4] S. Rao, T. Ushida, T. Tateishi, Y. Okazaki, S. Asao, Biomedical Materials Engineering 6, 79-86 (1996).
- [5] P. R. Walker, J. LeBlanc, M. Sikorska, Biochemistry 28, 3911-3915 (1989).
- [6] E. Eisenbarth, D. Velten, M. Müller, R. Thull, J. Breme, Biomaterials 25, 5705-5713 (2004).
- [7] M. Niinomi, D. Kuroda, K. Fukunaga, Materials Science and Engineering, A 263, 193-199 (1999).
- [8] M. Suárez, A. Ferná ndez, J. L. Mené ndez, R. Torrecillas, H. U. Kessel, J. Hennicke, R. Kirchner, T. Kessel, Sintering Applications Chapter 13, 319-342 (2013).
- [9] K. A. Nazari, A. Nouri, T. Hilditch, Materials and Design 88, 1164-1174 (2015).
- [10] J. Sieniawski, R. Filip, W. Ziaj a, Materials & Design 18 , 361-363 (1997).
- [11] C. M. Lee, C. P. Ju, J. H. Chern Lin, Journal of Oral Rehabilitation 29, 314-322 (2002).
- [12] M. K. Han, J. Y. Kim, M. J. Hwang, H. J. Song, Y. J. Park, Materials 8, 5986-6003 (2015).
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-da931710-9368-4c5e-bad4-c3d7694b9efc