PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Synthesis of adaptive electric drive control system of horizontal looper

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article presents studies on the electromechanical system of a metallurgical horizontal looper in the steelmaking industry. During the operation of this unit, parameters in the system changes due to variations of length and mass of the steel strip, these variations significantly change elastic properties and reduce moments of inertia. Various methods of combating elastic vibrations in electromechanical systems are analyzed in this article. The article presents a description of experiments with a horizontal looper. A mathematical model for two extreme positions of the unit was developed based on experimental results. Simulation experiments were made and their results are presented. A new control system structure is proposed to reduce vibrations in the electromechanical system of a horizontal looper. A power-up sensor, adjuster and velocity derivative feedback were added into the model structure. The proposed feedback link structure takes into account the change of steel strip length. From the experimental data it follows that the proposed system provides effective damping of mechanical vibrations in the steel strip if its length during operation is changed.
Rocznik
Strony
679--694
Opis fizyczny
Bibliogr. 19 poz., rys., wz.
Twórcy
autor
  • Karaganda State Technical University Kazakhstan
  • Karaganda State Technical University Kazakhstan
Bibliografia
  • [1] Opeiko O.F.,Control of an Electric Drive for a Continuous Material Processing Unit, Russian Electrical Engineering, vol. 80, no. 2, pp. 74–77 (2009).
  • [2] Nazarova E.S., Mathematical modeling electromechanical systems of cold rolling mills, Technicheskaya Electrodynamica, no. 5. pp. 82–89 (2015).
  • [3] Limonov L.G., Automated electric drive of industrial mechanisms, Kharkiv, Fort, vol. 272 (2009).
  • [4] Wójcik W., Yuchshenko O., Development of simulation model of strip pull self-regulation system in dynamic modes in a continuous hot galvanizing line, Informatyka, Automatyka, Pomiary, Publisher: Centrum Innowacji i Transferu Technologii LPNT, Lublin, Polska, vol. 4, no. 1, pp. 11–13 (2014).
  • [5] Breido I.V., Sivyakova G.A., Experimental researches of interconnected electric drives of continuous annealing unit, Abstracts of the III International Scientific and Technical Conference, Almaty, vol. 528 (2002).
  • [6] Breido I.V., Kuntush Y.V., Development of a mathematical model of the electromechanical system of a horizontal loop device, Proceedings of the University, no. 1, pp. 76–79 (2005).
  • [7] Prikhodko I.Y., Krot P.V., Parsenyuk E.A., Soloviev K.V., Akishin V.V., The control system and methods for reducing resonant vibrations in continuous cold strip mills, Fundamental and Applied Problems of Mining Metallurgy, Collection of Scientific Works, Dnepropetrovsk, pp. 232–244 (2006).
  • [8] Belykh I.A., Grigorev M.A., The Pipe Rotation Electric Drive of a Cold Rolling Mill at JSC Chelyabinsk Pipe Plant, Russian Electrical Engineering, vol. 90, no. 5, pp. 370–374 (2019).
  • [9] Kazantsev V.P., Dadenkov D.A., On the Synthesis of Discrete Continuous Control Systems with Elastic Dissipative Links for Electric Drives, Russian Electrical Engineering, vol. 83, no. 11, pp. 605–608 (2012).
  • [10] Vul’fson I., On the Problem of Dynamic Damping of Torsional Oscillations of a Machine Drive, Journal of Machinery Manufacture and Reliability, vol. 38, no. 1, pp. 13–18 (2009).
  • [11] Breido I., Kaverin V., Em G., The Research of the Adjustable Electric Drive of the Direct Current, DAAAM International Scientific Book, Chapter 19, pp. 211–226 (2018).
  • [12] Kozhevnikova I.A., Kozhevnikov A.V., Sorokin G.A., Markushevskii N.A., Damping of Vibrations in the Primary Drives of Cold-Rolling Mills, Steel in Translation, vol. 46, no. 10, pp. 739–741 (2016).
  • [13] Malafeev S.I., Malafeeva A.A., Konyashin V.I., Oscillations in the Mechatronic System of a Multi-Stand Rolling Mill, Russian Engineering Research, vol. 38, no. 5, pp. 342–347 (2018).
  • [14] Gannel’ L.V., Built In Filters to Suppress Vibrations in a Linear Elastic Electric Drive on Account of Reduction in the Effective Mass, Russian Electrical Engineering, vol. 84, no. 3, pp. 145–148 (2013).
  • [15] Breido J., Sivyakova G., Gurushkin A., The Modernization of the Multimotor Electric Drives, DAAAM International Scientific Book, Chapter 34, pp. 375–392 (2016).
  • [16] Gołębiowski M., Smoleń A., Gołębiowski L., Mazur D., Functional simulation model of the axial flux permanent magnet generator, Archives of Electrical Engineering, vol. 67, no. 4, pp. 857–868 (2018).
  • [17] Neto M.A., Ambrósio J.A.C., Roseiro L.M. et al., Active vibration control of spatial flexible multibody systems, Multibody System Dynamics, vol. 30, no. 1, pp. 13–35 (2013).
  • [18] Malafeev S.I., Malafeeva A.A., Konyashin V.I., Correction of Rolling Mill Mechatronic System to Limit Dynamic Loads, Russian Engineering Research, vol. 38, no. 6, pp. 431–433 (2018).
  • [19] Mazunin V.P., Dvoinikov D.A., Parametric Limitations in Nonlinear Control Systems of Mechanisms with Elasticity, Russian Electrical Engineering, vol. 81, no. 5, pp. 227–231 (2010).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-da90940f-4825-4691-a673-ff2360b7be70
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.