PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The properties of thermal sprayed aluminium coatings on non-alloy structural steel

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: of this paper was comparison of the structure, hardness and erosive wear of aluminium coatings produced on non-alloy structural steel S355JR (EN 10025-2) using the powder flame spraying and wire arc spraying methods. Design/methodology/approach: The latest model of flame powder sprayer and wire arc sprayer was used in the experiments. This provided very reliable spraying conditions. The additional material for flame-spraying was of Metco 54NS-1 pure aluminium powder (EN AW 1100 series). In the arc spraying process the Metco Aluminium (EN AW 1100 series) 1.6 mm diameter pure aluminium thermal spray wire was used. In each spraying technology binding alloy, i.e. Ni-Al, was employed as a primer coating. The used spray processes produced dense, abrasion and erosion resistant coatings approximal 1.0 mm thick. Aluminium coatings were characterized in accordance with ASTM G 76-95 erosion resistance tests, ASTM C 633-01 adhesion strength, HV 0.1 hardness tests and metallographic analyses. The scope of research included: preparation material for spraying, selection of properly process parameters for each sprayed technique based on preliminary technological tests, coatings manufacturing, examining the structure and tribological properties of aluminium coatings, comparison of obtained samples. Findings: The obtained results have proven superior properties of arc sprayed aluminium material coatings and have shown to be promising in industrial applications. Research limitations/implications: The presented test results are a preliminary assessment of the properties of thermally sprayed aluminium coatings. Therefore, further research is required regarding the resistance of aluminium coatings to abrasion and corrosion. Practical implications: The study is focused on selecting the best and most economical technique for manufacturing of wear and corrosion resistance aluminium coatings with a thickness of approximately 1 mm. Originality/value: It has been demonstrated that the use of a Ni-Al primer coating improves the adhesion of flame and arc sprayed aluminium coatings to steel surfaces.
Rocznik
Strony
64--73
Opis fizyczny
Bibliogr. 24 poz., rys., tab.
Twórcy
  • Department of Welding Engineering, Mechanical Engineering Faculty, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
Bibliografia
  • [1] A. Czupryński, Properties of Al2O3/TiO2 and ZrO2/CaO flame-sprayed coatings, Materiali in Tehnologije/Materials and Technology 51/1 (2017) 205-212, DOI: 10.17222/mit.2015.165.
  • [2] M. Adamiak, A. Czupryński, A. KopySC, Z. Monica, M. Olender, A. Gwiazda, The Properties of ArcSprayed Aluminum Coatings on Armor-Grade Steel, Metals 8/2 (2018) 142, DOI: https://doi.org/10.3390/met8020142.
  • [3] A. Czupryński, Flame Spraying of Aluminum Coatings Reinforced with Particles of Carbonaceous Materials as an Alternative for Laser Cladding Technologies, Materials 12/21 (2019) 3467, DOI: https://doi.org/10.3390/ma12213467.
  • [4] J. Górka, A. Czupryński, M. Żuk, M. Adamiak, A. Kopyść, Properties and structure of deposited nanocrystalline coatings in relation to selected construction materials resistant to abrasive wear, Materials 11/7 (2018) 1184, DOI: https://doi.org/10.3390/ma11071184.
  • [5] Y. Li, C. Li, S. Tang, Q. Zheng, J. Wang, Z. Zhang, Z. Wang, Interfacial Bonding and Abrasive Wear Behavior of Iron Matrix Composite Reinforced by Ceramic Particles, Materials 12/22 (2019) 3646, DOI: https://doi.org/10.3390/ma12223646.
  • [6] R. Burdzik, T. Węgrzyn, Ł. Konieczny, A. Lisiecki, Research on influence of fatigue metal damage of the inner race of bearing on vibration in different frequencies, Archives of Metallurgy and Materials 59 (2014) 1275-1281, DOI: https://doi.org/10.2478/amm-2014-0218.
  • [7] G. Moskal, A. Grabowski, A. Lisiecki, Laser remelting of silicide coatings on Mo and TZM alloy, Solid State Phenomena 226 (2015) 121-126, DOI: https://doi.org/10.4028/www.scientific.net/SSP.226.121.
  • [8] A. Lisiecki, Welding of titanium alloy by different types of lasers, Archives of Materials Science and Engineering 58/2 (2012) 209-218.
  • [9] A. Klimpel, L.A. Dobrzański, A. Lisiecki, D. Janicki, The study of properties of Ni-WC wires surfaced deposits, Journal of Materials Processing Technology 164-165 (2005) 1046-1055, DOI: https://doi.org/ 10.1016/j.jmatprotec.2005.02.195.
  • [10] A. Lisiecki, Mechanisms of hardness increase for composite surface layers during laser gas nitriding of the Ti6Al4V alloy, Materiali in Tehnologije/ Materials and Technology 51/4 (2017) 577-583, DOI: https://doi.org/10.17222/mit.2016.106.
  • [11] A. Świerczyńska, J. Łabanowski, J. Michalska, D. Fydrych, Corrosion behavior of hydrogen charged super duplex stainless steel welded joints, Materials and Corrosion 68/10 (2017) 1037-1045, DOI: https://doi.org/10.1002/maco.201709418.
  • [12] EN 10025-2:2019. Hot rolled products of structural steels – Part 2: Technical delivery conditions for nonalloy structural steels.
  • [13] EN 13507:2010. Thermal spraying. Pre-treatment of surfaces of metallic parts and components for thermal spraying.
  • [14] ASTM G76-95: Standard Test Method for Conducting Erosion Tests by Solid Particle Impingement Using Gas Jets.
  • [15] A. Lisiecki, A. Kurc-Lisiecka, Erosion wear resistance of titanium-matrix composite Ti/Tin produced by diode-laser gas nitriding, Materiali in Tehnologije/ Materials and Technology 51/1 (2017) 29-34, DOI: https://doi.org/10.17222/mit.2015.160.
  • [16] A. Lisiecki, J. Piwnik, Tribological characteristic of titanium alloy surface layers produced by diode laser gas nitriding, Archives of Metallurgy and Materials 61/2 (2016) 543-552, DOI: https://doi.org/10.1515/amm-2016-0094.
  • [17] A. Kurc-Lisiecka, A. Lisiecki, Hybrid Laser-GMA Welding of High-Strength Steel Grades, Materials Performance and Characterization 8/4 (2019) 614-625, DOI: https://doi.org/10.1520/MPC20190070.
  • [18] A. Kurc-Lisiecka, A. Lisiecki, Weld metal toughness of autogenous laser-welded joints of high-strength steel DOMEX 960, Materials Performance and Characterization 8/6 (2019) 1226-1236, DOI: https://doi.org/10.1520/MPC20190071.
  • [19] A. Kurc-Lisiecka, Impact toughness of laser-welded butt joints of the new steel grade strenx 1100MC, Materiali in Tehnologije/Materials and Technology 51/4 (2017) 643-649, DOI: https://doi.org/10.17222/mit.2016.234.
  • [20] A. Lisiecki, D. Ślizak, A. Kukofka, Robotized Fiber Laser Cladding of Steel Substrate by Metal Matrix Composite Powder at Cryogenic Conditions, Materials Performance and Characterization 8/6 (2019) 12141225, DOI: https://doi.org/10.1520/MPC20190069.
  • [21] A. Lisiecki, D. Ślizak, A. Kukofka, Robotic fiber laser cladding of steel substrate with iron-based metallic powder, Materials Performance and Characterization 8/6 (2019) 1202-1213, DOI: https://doi.org/10.1520/MPC20190068.
  • [22] D. Janicki, J. Górka, A. Czupryński, W. Kwaśny, M. Żuk, Diode laser cladding of Co-based composite coatings reinforced by spherical WC particles, Proceedings of SPIE 10159 (2016) 101590N, DOI: https://doi.org/10.1117/12.2261675.
  • [23] J. Górka, T. Kik, A. Czupryński, W. Foreiter, Technology of welding hard wearing plates, Welding International 28/10 (2014) 749-755, DOI: https://doi.org/10.1080/09507116.2012.753223.
  • [24] A. Klimpel, A. Czupryński, J. Górka, T. Kik, M. Melcer, A study of modern materials for arc spraying, Welding International 28/2 (2014) 100-106, DOI: https://doi.org/10.1080/09507116.2012.708479.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-da8c0bae-8a26-4da8-9769-8d80528a152e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.