PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modeling and experimental investigation of a controllable rotary fluid damper

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Controllable rotary fluid damper (CRFD) is an efficient and cheap energy dissipation device, which is used to reduce the impact of vibration in mechanical systems. In this paper, the CRFD controlled by a servo motor is developed to reduce the effects of vibrations in the helicopter flight control system. The dynamic mechanical characteristic of the CRFD is experimentally investigated by the MTS machine. Due to the complex factors such as high shear thinning rate and compressibility of the damping medium, inertia of moving parts and internal friction, the CRFD studied has highly nonlinear hysteresis characteristics. The accuracy of the damper modeling is of great significance for designing effective vibration reduction methods. Therefore, a new generalized viscous–nonlinear elastic model is proposed to track the mechanical characteristics of CRFD. On the basis of parameter sensitivity analysis, the proposed generalized viscous–nonlinear elastic model is modified. According to the identification results of the modified model, the main parameters are fitted as polynomial functions of motor rotation angle. Through error analysis between analytical torques and experimental torques, it is concluded that the modified generalized viscous–nonlinear elastic model has the smallest error compared with Kwok and Maxwell models, which indicates that the proposed modified model can accurately describe the mechanical characteristics of the CRFD under different working conditions.
Rocznik
Strony
493--516
Opis fizyczny
Bibliogr. 33 poz., rys., tab., wykr.
Twórcy
autor
  • College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
autor
  • College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
autor
  • College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
autor
  • College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
Bibliografia
  • 1. M.V. Waghmare, S.N. Madhekar, V.A. Matsagar, Semi-active fluid viscous dampers for seismic mitigation of RC elevated liquid storage tanks, International Journal of Structural Stability and Dynamics, 19, 03, 1950020, 2019.
  • 2. S. Bakhshinezhad, M. Mohebbi, Multi-objective optimal design of semi-active fluid viscous dampers for nonlinear structures using NSGA-II, Structures, 24, 678–689, 2020.
  • 3. M. Ahmadizadeh, On equivalent passive structural control systems for semi-active control using viscous fluid dampers, Structural Control and Health Monitoring, 14, 6, 858–875, 2010.
  • 4. Y.-J. Chen, Development analysis of the inceptors for helicopter’s fly-by-wire control system, Helicopter Technique, 3, 59–66, 2015.
  • 5. C. Yang, X. Gao, Z. Liu, L. Cai, Q. Cheng, C. Zhang, Modeling and analysis of the vibration characteristics of a new type of in-arm hydropneumatic suspension of a tracked vehicle, Journal of Vibroengineering, 18, 7, 4627–4646, 2016.
  • 6. V.N.M. Arelekatti, N.T. Petelina, W.B. Johnson, A.G. Winter, Design of a passive, shear-based rotary hydraulic damper for single-axis prosthetic knees, ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 2018.
  • 7. R.S.T. Saini, S. Chandramohan, S. Sujatha, H. Kumar, Design of bypass rotary vane magnetorheological damper for prosthetic knee application, Journal of Intelligent Material Systems and Structures, 32, 9, 931–942, 2021.
  • 8. V.M. Arelekatti, N.T. Petelina, W.B. Johnson, A.G. Winter, M.J. Major, Design of a passive, shear-based rotary hydraulic damper for single-axis prosthetic knees, International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 51807, V05AT07A064, 2018.
  • 9. F. Imaduddin, S.A. Mazlan, H. Zamzuri, A design and modelling review of rotary magnetorheological damper, Materials and Design, 51, 575–591, 2013.
  • 10. J.Q. Zhang, Z.Z. Feng, Q. Jing, Optimization analysis of a new vane MRF damper, Journal of Physics, Conference Series, 149, 1, 012087, 2009.
  • 11. R. Ma, K. Bi, H. Hao, A novel rotational inertia damper for amplifying fluid resistance: Experiment and mechanical model, Mechanical Systems and Signal Processing, 149, 107313, 2021.
  • 12. R. Bouc, A mathematical model for hysteresis, Acustica, 24, 1, 16–25, 1971.
  • 13. F. Weber, G. Feltrin, H. Distl, Detailed analysis and modelling of MR dampers at zero current, Journal of Structural Engineering and Mechanics, 30, 6, 787–790, 2008.
  • 14. İ. Şahin, T. Engin, Ş. Çeşmeci, Comparison of some existing parametric models for magnetorheological fluid dampers, Smart Materials and Structures, 19, 3, 035012, 2010.
  • 15. Y. He, G. Liang, B. Xue, Z. Peng, Y. Wei, A unified MR damper model and its inverse characteristics investigation based on the neuro-fuzzy technique, International Journal of Applied Electromagnetics and Mechanics, 61, 2, 225–245, 2019.
  • 16. C.C. Chang, P. Roschke, Neural network modeling of a magnetorheological damper, Journal of Intelligent Material Systems and Structures, 9, 9, 755–764, 1998.
  • 17. Y.A. Yucesan, F.A. Viana, L. Manin, J. Mahfoud, Adjusting a torsional vibration damper model with physics-informed neural networks, Mechanical Systems and Signal Processing, 154, 107552, 2021.
  • 18. R.C. Ehrgott, S.F. Masri, Modeling the oscillatory dynamic behavior of electrorheological materials in shear, Smart Materials and Structures, 1, 4, 275, 1992.
  • 19. K. Hudha, H. Jamaluddin, P.M. Samin, R.A. Rahman, Non-parametric linearised data driven modelling and force tracking control of a magnetorheological damper, International Journal of Vehicle Design, 46, 2, 250–269, 2008.
  • 20. M. Cheng, Z. Chen, W. Liu, Y. Jiao, A novel parametric model for magnetorheological dampers considering excitation characteristics, Smart Materials and Structures, 29, 4, 045002, 2020.
  • 21. W. Wang, Z. Zhou, W. Zhang, S. Iwnicki, A new nonlinear displacement-dependent parametric model of a high-speed rail pantograph hydraulic damper, Vehicle System Dynamics, 58, 2, 272–289, 2020.
  • 22. R. Greco, J. Avakian, G.C. Marano, A comparative study on parameter identification of fluid viscous dampers with different models, Archive of Applied Mechanics, 84, 8, 1117–1134, 2014.
  • 23. A.R. Ghaemmaghami, O.S. Kwon, Nonlinear modeling of MDOF structures equipped with viscoelastic dampers with strain, temperature and frequency-dependent properties, Engineering Structures, 168, 903–914, 2018.
  • 24. W.O. Wong, C.N. Wong, Optimal design of maxwell-viscous coulomb air damper with a modified fixed point theory, Journal of Vibration and Acoustics, 143, 3, 031002, 2021.
  • 25. H. Zhu, X. Rui, F. Yang, W. Zhu, M. Wei, An efficient parameters identification method of normalized Bouc–Wen model for MR damper, Journal of Sound and Vibration, 448, 146–158, 2019.
  • 26. D.H. Wang, W.H. Liao, Magnetorheological fluid dampers: a review of parametric modelling, Smart Materials and Structures, 20, 2, 023001, 2011.
  • 27. M.C. Constantinou, M.D. Symans, Experimental study of seismic response of buildings with supplemental fluid dampers, The Structural Design of Tall Buildings, 2, 2, 93–132, 1993.
  • 28. Y. Sun, Y. Huang, M. Wang, J. Wu, S. Yuan, J. Ding, Y. Peng, H. Pu, S. Xie, J. Luo, Design, testing and modelling of a tuneable GER fluid damper under shear mode, Smart Materials and Structures, 29, 8, 085011, 2020.
  • 29. X. Cao, M. Yu, J. Zhou, X. Guo, Modeling and experimental verification of a semirotary fluid damper based on an improved Kelvin model, Arabian Journal for Science and Engineering, 46, 8, 7587–7596, 2021.
  • 30. X. Guo, J. Zhou, X. Cao, Y. Wang, Modeling and experimental study of a semi-active blade damper, Engineering Mechanics, 39, 10, 227–237, 2022.
  • 31. D.M. Hamby, A Review of Techniques for Parameter Sensitivity Analysis of Environmental Models, Environmental Monitoring and Assessment, 32, 2, 135–154, 1994.
  • 32. M. Jiang, X. Rui, W. Zhu, F. Yang, H. Zhu, R. Jiang, Parameter sensitivity analysis and optimum model of the magnetorheological damper’s Bouc-Wen model, Journal of Vibration and Control, 27, 19–20, 2291–2302, 2021.
  • 33. L.Y. Lu, G.L. Lin, M.H. Shih, An experimental study on a generalized Maxwell model for nonlinear viscoelastic dampers used in seismic isolation, Engineering Structures, 34, 111–123, 2012.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-da873c59-fb92-4d3d-baef-3f42a7d02c35
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.