Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this comprehensive study, the concept and structural diagram of the system for diagnostics of induction electric motors of vehicles with the development of algorithms for the operation of modular units for monitoring the state of the main structural elements are proposed. During the development of the diagnostic system, the peculiarities of the construction of diagnostic systems of rotating electric machines were investigated in the real conditions of their operation, and modern methods of current and vibration diagnostics were implemented. The work algorithms of each module are presented in the functional diagram of the general diagnostic system of and cover important defects of induction motors. The diagnostic system combines methods that use different diagnostic principles and criteria and are adapted for use in an embedded diagnostic system. The developed functional diagram of the diagnostic system can be used for practical implementation in physical form. The use of the proposed diagnostic system will make it possible to obtain continuous information about the state of both electrical and mechanical components of the induction motor when operating under load with a poor-quality power system in real operating conditions.
Czasopismo
Rocznik
Tom
Strony
art. no. 2024109
Opis fizyczny
Bibliogr. 57 poz., rys.
Twórcy
autor
- Department of Electromechanics and Rolling Stock of Railways, Kyiv Institute of Railway Transport of State University of Infrastructure and Technologies, 04071, Ukraine
autor
- Department of Electrical Engineering, Volodymyr Dahl East Ukrainian National University, 01042, Ukraine
autor
- Department of Mechanical Engineering and Applied Mechanics, Volodymyr Dahl East Ukrainian National University, 01042, Ukraine
autor
- Department of Ship Power Units, Auxiliary Mechanisms of Ships and their Operation, Kyiv Institute of Water Transport of State University of Infrastructure and Technologies, 04071, Ukraine
autor
- Department of Logistics Management and Traffic Safety in Transport, Volodymyr Dahl East Ukrainian National University, 01042, Ukraine
Bibliografia
- 1. Abdelhak G, Ahmed BS, Djekidel R. Fault diagnosis of induction motors rotor using current signature with different signal processing techniques. Diagnostyka 2022; 23(2): 1-9. https://doi.org/10.29354/diag/147462.
- 2. Abdellah C, Mama C, Meflah Abderrahmane MR, Mohammed B. Current Park’s Vector Pattern Technique for Diagnosis of Broken Rotor Bars Fault in Saturated Induction Motor. Journal of Electrical Engineering & Technology 2023; 18(4): 2749-58. https://doi.org/10.1007/s42835-022-01342-6.
- 3. Abdelmaksoud M, Torki M, El-Habrouk M, Elgeneidy M. Convolutional-neural-network-based multi-signals fault diagnosis of induction motor using single and multi-channels datasets. Alexandria Engineering Journal 2023; 73: 231-48. https://doi.org/10.1016/j.aej.2023.04.053.
- 4. Akin B, Choi S, Orguner U, Toliyat HA. A Simple Real-Time Fault Signature Monitoring Tool for MotorDrive-Embedded Fault Diagnosis Systems. IEEE Transactions on Industrial Electronics 2011; 58(5): 1990-2001. https://doi.org/10.1109/TIE.2010.2051936.
- 5. AlShorman O, Alkahatni F, Masadeh M, Irfan M, Glowacz A, Althobiani F, i in. Sounds and Acoustic Emission-based Early Fault Diagnosis of Induction Motor: A Review Study. Advances in Mechanical Engineering 2021; 13 https://doi.org/10.1177/1687814021996915.
- 6. Antonino-Daviu JA, Strangas EG. Fault Diagnosis, Prognosis, and Reliability of Electric Motors and Drives: Open Questions, Challenges and Perspectives. 2022 International Conference on Electrical Machines (ICEM) 2022; 731-737. https://doi.org/10.1109/ICEM51905.2022.9910791.
- 7. Benamira N, Dekhane A, Kerfali S, Bouras A, Reffas O. Experimental Investigation of the Combined Fault: Mechanical and Electrical Unbalances in Induction Motors Based on Stator Currents Monitoring. Instrumentation Mesure Metrologie 2023; Vol. 21: 207-15. https://doi.org/10.18280/i2m.210601.
- 8. Borghesani P, Ricci R, Chatterton S, Pennacchi P. A new procedure for using envelope analysis for rolling element bearing diagnostics in variable operating conditions. Mechanical Systems and Signal Processing 2013;38(1):23-35. https://doi.org/10.1016/j.ymssp.2012.09.014.
- 9. Cablea G, Granjon P, Bérenguer C. Three-phase electrical signals analysis for mechanical faults monitoring in rotating machine systems. Mechanical Systems and Signal Processing 2017; 92: 278-92. https://doi.org/10.1016/j.ymssp.2017.01.030.
- 10. Chen X, Sun S. Resonance Detection Method and Realization of Bearing Fault Signal Based on Kalman Filter and Spectrum Analysis. Applied Sciences 2023; 13(3): 1472. https://doi.org/10.3390/app13031472.
- 11. Choudhary A, Goyal D, Shimi SL, Akula A. Condition Monitoring and Fault Diagnosis of Induction Motors: A Review. Archives of Computational Methods in Engineering 2019; 26(4): 1221-38. https://doi.org/10.1007/s11831-018-9286-z.
- 12. Cruz J dos S, Fruett F, Lopes R da R, Takaki FL, Tambascia C de A, Lima ER de, i in. Partial Discharges Monitoring for Electric Machines Diagnosis: A Review. Energies 2022; 15(21): 7966. https://doi.org/10.3390/en15217966.
- 13. Edomwandekhoe K, Liang X. Advanced feature selection for broken rotor bar faults in induction motors. 2018 IEEE/IAS 54th Industrial and Commercial Power Systems Technical Conference (I&CPS) 2018; 1–10. https://doi.org/10.1109/ICPS.2018.8369981.
- 14. Florkowski M, Florkowska B, Furgał J, Zydron P. Impact of high voltage harmonics on interpretation of partial discharge patterns. IEEE Transactions on Dielectrics and Electrical Insulation 2013; 20(6): 2009-16. https://doi.org/10.1109/TDEI.2013.6678848.
- 15. Fomin O, Logvinenko O, Burlutsky O, Rybin A. Scientific Substantiation of Thermal Leveling for Deformations in the Car Structure. International Journal of Engineering & Technology 2018; 7(4.3): 125-9. https://doi.org/10.14419/ijet.v7i4.3.19721.
- 16. Gangsar P, Tiwari R. Signal based condition monitoring techniques for fault detection and diagnosis of induction motors: A state-of-the-art review. Mechanical Systems and Signal Processing 2020; 144: 106908. https://doi.org/10.1016/j.ymssp.2020.106908.
- 17. Bazan GH, Scalassara PR, Endo W, Goedtel A, Godoy WF, Palácios RHC. Stator fault analysis of three-phase induction motors using information measures and artificial neural networks. Electric Power Systems Research 2017; 143: 347-56. https://doi.org/10.1016/j.epsr.2016.09.031.
- 18. Gerlici J, Goolak S, Gubarevych O, Kravchenko K, Kamchatna-Stepanova K, Toropov A. Method for Determining the Degree of Damage to the Stator Windings of an Induction Electric Motor with an Asymmetric Power System. Symmetry 2022; 14(7): 1305. https://doi.org/10.3390/sym14071305.
- 19. Goolak S, Liubarskyi B, Riabov I, Chepurna N, Pohosov O. Simulation of a direct torque control system in the presence of winding asymmetry in induction motor. Engineering Research Express 2023; 5(2): 025070. https://doi.org/10.1088/2631-8695/acde46.
- 20. Goolak S, Liubarskyi B, Lukoševičius V, Keršys R, Keršys A. Operational Diagnostics System for Asymmetric Emergency Modes in Traction Drives with Direct Torque Control. Applied Sciences 2023; 13(9): 5457. https://doi.org/10.3390/app13095457.
- 21. Gritli Y, Di Tommaso AO, Filippetti F, Miceli R, Rossi C, Chatti A. Investigation of motor current signature and vibration analysis for diagnosing rotor broken bars in double cage induction motors. Automation and Motion International Symposium on Power Electronics Power Electronics, Electrical Drives 2012; 1360-5. https://doi.org/10.1109/SPEEDAM.2012.6264465.
- 22. Gubarevych O, Goolak S, Melkonova I, Yurchenko M. Structural diagram of the built-in diagnostic system for electric drives of vehicles. Diagnostyka 2022; 23(4): 1-13. https://doi.org/10.29354/diag/156382.
- 23. Gubarevych O. Comparison of the results of simulation modeling of an asynchronous electric motor with the calculated electrodynamic and energy characteristics. Przegląd Elektrotechniczny 2022; 1(10): 63-8. https://doi.org/10.15199/48.2022.10.11.
- 24. Gubarevych O, Gerlici J, Gorobchenko O, Kravchenko K, Zaika D. Analysis of the features of application of vibration diagnostic methods of induction motors of transportation infrastructure using mathematical modeling. Diagnostyka 2023; 24(1): 1-10. https://doi.org/10.29354/diag/161308.
- 25. Gubarevych O, Gerlici J, Kravchenko O, Melkonova I, Melnyk O. Use of Park’s Vector Method for Monitoring the Rotor Condition of an Induction Motor as a Part of the Built-In Diagnostic System of Electric Drives of Transport. Energies 2023; 16(13): 5109. https://doi.org/10.3390/en16135109.
- 26. Gubarevych O, Goolak S, Daki O, Yakusevych Y. Determining an additional diagnostic parameter for improving the accuracy of assessment of the condition of stator windings in an induction motor. EasternEuropean Journal of Enterprise Technologies 2021; 5(113): 21-29. https://doi.org/10.15587/1729-4061.2021.239509.
- 27. Gubarevych O, Goolak S, Golubieva S. Systematization And Selection Of Diagnosing Methods For The Stator Windings Insulation Of Induction Motors. Revue Roumaine Des Sciences Techniques - Série Électrotechnique Et Énergétique 2022; 67(4): 445-450.
- 28. Gundewar SK, Kane PV. Condition Monitoring and Fault Diagnosis of Induction Motor. Journal of Vibration Engineering & Technologies 2021; 9(4): 643-74. https://doi.org/10.1007/s42417-020-00253-y.
- 29. Gyftakis KN, Marques Cardoso AJ, Antonino-Daviu JA. Introducing the Filtered Park’s and Filtered Extended Park’s Vector Approach to detect broken rotor bars in induction motors independently from the rotor slots number. Mechanical Systems and Signal Processing 2017; 93: 30-50. https://doi.org/10.1016/j.ymssp.2017.01.046.
- 30. Hu A, Bai Z, Lin J, Xiang L. Intelligent condition assessment of industry machinery using multiple type of signal from monitoring system. Measurement 2020; 149: 107018. https://doi.org/10.1016/j.measurement.2019.107018.
- 31. Jaber A, Lazaridis P, Zhang Y, Saeed B, Khan U, Upton D, Ahmed H. Assessment of absolute partial discharge intensity from a free-space radiometric measurement. 2016 URSI Asia-Pacific Radio Science Conference (URSI AP-RASC) 2016; 1011-1014, https://doi.org/10.1109/URSIAPRASC.2016.7601345.
- 32. Kalivoda J, Neduzha L. Running Dynamics of Rail Vehicles. Energies 2022; 15(16): 5843. https://doi.org/10.3390/en15165843.
- 33. Kokkotis A, Seltzer-Grant M, Polley A, Barnwell E. Advanced Analysis and Diagnostics for Remote Online PD Monitoring of HV Rotating Machines. 2018 IEEE International Conference on High Voltage Engineering and Application (ICHVE) 2018; 1-4. https://doi.org/10.1109/ICHVE.2018.8641881.
- 34. Kondratieva L, Bogdanovs A, Overianova L, Riabov I, Goolak S. Determination of the working energy capacity of the on-board energy storage system of an electric locomotive for quarry railway transport during working with a limitation of consumed power. Archives of Transport 2023; 65: 119-36. https://doi.org/10.5604/01.3001.0016.2631.
- 35. Kupin AI, Kuznyetsov DI. Information technology for group diagnosis of induction electric motors based on spectral characteristics and intelligent classification. Monograph. Kryvyi Rih: Publisher of FOP Chernyavskyi D.O. 2016; 200.
- 36. Kvasnikov VP, Stakhova AP. Spectral Analysis of Vibration Signal Using Fourier Transform. Collection of Scientific Works of the Odesa State Academy of Technical Regulation and Quality 2022; 2(21): 28-33. https://doi.org/10.32684/2412-5288-2022-2-21-28-33.
- 37. Lovska A, Fomin O, Píštěk V, Kučera P. Dynamic Load Modelling within Combined Transport Trains during Transportation on a Railway Ferry. Applied Sciences 2020; 10(16): 5710. https://doi.org/10.3390/app10165710.
- 38. Luo P, Yin Z, Yuan D, Gao F, Liu J. An Intelligent Method for Early Motor Bearing Fault Diagnosis Based on Wasserstein Distance Generative Adversarial Networks Meta Learning. IEEE Transactions on Instrumentation and Measurement 2023; 72: 1-11. https://doi.org/10.1109/TIM.2023.3278289.
- 39. Ma J, Li Y, Wang L, Hu J, Li H, Fei J, i in. Stator ITSC Fault Diagnosis for EMU Induction Traction Motor Based on Goertzel Algorithm and Random Forest. Energies 2023; 16(13): 4949. https://doi.org/10.3390/en16134949.
- 40. Malla C, Panigrahi I. Review of Condition Monitoring of Rolling Element Bearing Using Vibration Analysis and Other Techniques. Journal of Vibration Engineering & Technologies 2019; 7(4): 407-14. https://doi.org/10.1007/s42417-019-00119-y.
- 41. Martinez J, Belahcen A, Muetze A. Analysis of the Vibration Magnitude of an Induction Motor With Different Numbers of Broken Bars. IEEE Transactions on Industry Applications 2017; 53(3): 2711-20. https://doi.org/10.1109/TIA.2017.2657478.
- 42. Messaoudi M, Flah A, Alotaibi AA, Althobaiti A, Sbita L, Ziad El-Bayeh C. Diagnosis and Fault Detection of Rotor Bars in Squirrel Cage Induction Motors Using Combined Park’s Vector and Extended Park’s Vector Approaches. Electronics 2022; 11(3): 380. https://doi.org/10.3390/electronics11030380.
- 43. Örgüt O, Sahin İ, Güneş EO. Detection of Incipient Inter-Turn Short-Circuit Faults by Artificial Intelligence Classifiers. 2022 24th European Conference on Power Electronics and Applications (EPE’22 ECCE Europe) 2022; 1-10.
- 44. Paz Parra A, Amaya Enciso MC, Olaya Ochoa J, Palacios Peñaranda JA. Stator fault diagnosis on squirrel cage induction motors by ESA and EPVA. 2013 Workshop on Power Electronics and Power Quality Applications (PEPQA) 2013; 1-6. https://doi.org/10.1109/PEPQA.2013.6614937.
- 45. Polkovnychenko DV. Post-repair assessment of the technical condition of squirrel-cage induction electric motors. Electrical engineering & Electromechanics. National Technical University "Kharkiv Polytechnic Institute" 2005; 1: 59-62.
- 46. Pusca R, Sbaa S, Bessous N, Romary R, Bousseksou R. Mechanical Failure Detection in Induction Motors Using Stator Current and Stray Flux Analysis Techniques. Engineering Proceedings 2022; 14(1): 19. https://doi.org/10.3390/engproc2022014019.
- 47. Riabov I, Goolak S, Kondratieva L, Overianova L. Increasing the energy efficiency of the multi-motor traction electric drive of an electric locomotive for railway quarry transport. Engineering Science and Technology, an International Journal 2023; 42: 101416. https://doi.org/10.1016/j.jestch.2023.101416.
- 48. Eddine RC, Slimane B, Abdelkarim B. Predictive diagnosis of unbalance and misalignment defects Based on the FFT and DWT of the stator current of an induction motor: Experimental approaches. Recueil de mécanique 2019; 3(2): 268-79. https://doi.org/10.5281/zenodo.2581404.
- 49. Spyropoulos DV, Mitronikas ED. Induction motor stator fault diagnosis technique using Park vector approach and complex wavelets. 2012 XXth International Conference on Electrical Machines 2012; 1730-4. https://doi.org/10.1109/ICElMach.2012.6350114.
- 50. Sha M, Luo M. Online Identification Technology Based on Variation Mechanism of Traction Motor Parameters. 2021 4th International Conference on Advanced Electronic Materials, Computers and Software Engineering (AEMCSE) 2021; 77-82. https://doi.org/10.1109/AEMCSE51986.2021.00023.
- 51. Tanenkeu F, Kuznietsov A. On the Applicability of Hypothesis Testing to On-board Detection of an InterTurn Short Circuit Fault in PMSM Drive. 2020 Fifteenth International Conference on Ecological Vehicles and Renewable Energies (EVER) 2020; 1-6. https://doi.org/10.1109/EVER48776.2020.9243019.
- 52. Tian Y, Guo D, Zhang K, Jia L, Qiao H, Tang H. A Review of Fault Diagnosis for Traction Induction Motor. 2018 37th Chinese Control Conference (CCC) 2018; 5763-8. https://doi.org/10.23919/ChiCC.2018.8484044.
- 53. Varbanets R, Fomin O, Píštěk V, Klymenko V, Minchev D, Khrulev A, i in. Acoustic Method for Estimation of Marine Low-Speed Engine Turbocharger Parameters. Journal of Marine Science and Engineering 2021; 9(3): 321. https://doi.org/10.3390/jmse9030321.
- 54. Wang J, Li P, Deng X, Li N, Xie X, Liu H, i in. Evaluation on Partial Discharge Intensity of Electrical Equipment Based on Improved ANFIS and Ultraviolet Pulse Detection Technology. IEEE Access 2019; 7: 126561-70. https://doi.org/10.1109/ACCESS.2019.2938784.
- 55. Wang Z, Yang J, Li H, Zhen D, Xu Y, Gu F. Fault Identification of Broken Rotor Bars in Induction Motors Using an Improved Cyclic Modulation Spectral Analysis. Energies 2019; 12(17): 3279. https://doi.org/10.3390/en12173279.
- 56. Zheng J, Cao S, Pan H, Ni Q. Spectral envelope-based adaptive empirical Fourier decomposition method and its application to rolling bearing fault diagnosis. ISA Transactions 2022; 129: 476-92. https://doi.org/10.1016/j.isatra.2022.02.049.
- 57. Zhuang T, Ren M, Gao X, Dong M, Huang W, Zhang C. Insulation Condition Monitoring in Distribution Power Grid via IoT-Based Sensing Network. In IEEE Transactions on Power Delivery 2019; 34(4): 1706-1714. https://doi.org/10.1109/TPWRD.2019.2918289.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-da8689fe-47ce-4107-8e85-31f2141fa449