Tytuł artykułu
Autorzy
Identyfikatory
Warianty tytułu
Millimeter and terahertz waves in cellular systems: utilization, propagation modeling and impact on network architecture
Konferencja
Konferencja Radiokomunikacji i Teleinformatyki (11-13.09.2024 ; Poznań, Polska)
Języki publikacji
Abstrakty
Oczekuje się, że technologie dostępu radiowego wykorzystujące fale milimetrowe (mmWave), a w jeszcze większym stopniu terahercowe (THz), zapewnią znacznie większą niż obecnie przepustowość, zwłaszcza w obszarach o dużym natężeniu ruchu. Jednocześnie, silnie kierunkowe charakterystyki promieniowania anten, które muszą być wykorzystywane zarówno po stronie nadawczej, jak i odbiorczej łącza w celu przezwyciężenia znaczących strat absorpcyjnych w gazach atmosferycznych, dynamiczne blokowanie ścieżek propagacji przez duże statyczne i małe poruszające się obiekty, makro- i mikromobilność urządzeń użytkownika sprawia, że świadczenie niezawodnych usług za pośrednictwem tych zakresów częstotliwości jest złożonym zadaniem. Wyzwanie to jest dodatkowo komplikowane przez rodzaj spodziewanych aplikacji przewidzianych dla tych systemów, które z natury wymagają gwarantowanych parametrów jakościowych w interfejsie radiowym. W artykule omówiono wybrane zagadnienia dotyczące wykorzystania, modelowania propagacji i wpływu fal z tego zakresu na architekturę przyszłych sieci mobilnych.
Radio access technologies using millimeter waves (mmWave), and to an even greater extent terahertz (THz) bands, are expected to provide significantly higher throughput than today in high traffic areas. At the same time, the highly directional radiation patterns of the antennas, which must be used on both the transmit and receive sides of the link to overcome significant atmospheric absorption, the dynamic blocking of propagation paths by large static and small moving objects, and the macro- and micromobility of user equipment (UEs) make providing reliable services over these frequency bands an extremely complex task. This challenge is further complicated by the type of applications envisioned for these systems, which inherently require guaranteed quality of service at the radio interface. This paper discusses selected issues regarding the use, propagation modeling and impact of mmWave ant THz range on the architecture of future mobile networks.
Wydawca
Rocznik
Tom
Strony
25--32
Opis fizyczny
Bibliogr. 30 poz., rys., tab.
Twórcy
Bibliografia
- [1] Petrov V., Kurner T., and Hosako I.: IEEE 802.15.3d: First standardization efforts for sub-terahertz band communications towards 6G, IEEE Commun. Mag., vol. 58, nr 11, s. 28-33, Nov. 2020.
- [2] Polese M., Jornet J. M., Melodia T., and Zorzi M.: Toward end-toend, full-stack 6G terahertz networks, IEEE Commun. Mag., vol. 58, no. 11, pp. 48–54, Nov. 2020.
- [3] Sarieddeen H. et al., Next generation Terahertz communications: A rendezvous of sensing, imaging, and localization, IEEE Commun. Mag., vol. 58, no. 5, pp. 69 – 75, May 2020.
- [4] Moltchanov D., Sopin E., Begishev V., Samuylov A., Koucheryavy Y., and Samouylov K.: A Tutorial on Mathematical Modeling of 5G/6G Millimeter Wave and Terahertz Cellular Systems, IEEE Communications Surveys & Tutorials, vol. 24, no. 2, pp. 1072-1116, Secondquarter 2022, doi: 10.1109/COMST.2022.3156207
- [5] Commerce Spectrum Management Advisory Committee (CSMAC), Report of Subcommittee on 6G, Final Report, December 2023.
- [6] ITU-R Framework for IMT-2030: Review and Future Direction, NGMN Alliance
- [7] ETSI GR THz 001 V1.1.1: TeraHertz modeling (THz); Identification of use cases for THz communication systems, 2024-01.
- [8] ETSI GR THz 002,V1.1.1: TeraHertz technology (THz); Identification of frequency bands of interest for THz communication systems, 2024-03.
- [9] Gurvits, L.I., Paragi, Z., Casasola, V. et al.: THEZA: TeraHertz Exploration and Zooming-in for Astrophysics, Experimantal Astronomy 51, 559–594, 2021, https://doi.org/10.1007/s10686-021-09714-y
- [10] Giordani M., Polese M., Mezzavilla M., Rangan S., and Zorzi M.: Toward 6G Networks: Use Cases and Technologies, IEEE Communications Magazine, vol. 58, no. 3, pp. 55-61, March 2020, doi: 10.1109/MCOM.001.1900411.
- [11] Recommendation ITU-R P.676-13, Attenuation by atmospheric gases and related effects, P Series Radiowave propagation, 08/2022.
- [12] Rangan S., Rappaport T. S., and Erkip E.: Millimeter-Wave Cellular Wireless Networks: Potentials and Challenges, Proceedings of the IEEE, vol. 102, no. 3, pp. 366-385, March 2014, doi: 10.1109/ JPROC.2014.2299397.
- [13] Lin Z., Du X., Chen H. -H., Ai B., Chen Z., and Wu D.: Millimeter-Wave Propagation Modeling and Measurements for 5G Mobile Networks, IEEE Wireless Communications, vol. 26, no. 1, pp. 72-77, February 2019, doi: 10.1109/MWC.2019.1800035
- [14] Farooq U. and Lokam A.: Performance analysis of mmWave/subterahertz communication link for 5G and B5G mobile networks, Frequenz 77, no. 11-12 (2023): 599-606. https://doi.org/10.1515/ freq-2023-0024
- [15] Jiang S., Charan G., and Alkhateeb A.: LiDAR aided future beam prediction in real-world millimeter wave V2I communications, IEEE Wireless Communications Letters, vol. 12, no. 2, pp. 212–216, 2022.
- [16] Smith E. K.: Centimeter and millimeter wave attenuation and brightness temperature due to atmospheric oxygen and water vapor, Radio Sci., vol. 17, no. 6, pp. 1455–1464, Nov./Dec. 1982.
- [17] Liebe H. J. and Layton D. H.: Millimeter-wave properties of the atmosphere: Laboratory studies and propagation modeling, NASA STI, Washington, DC, USA, Recon Rep. N 88, 1987, Art. no. 21387. Weijun Gao, Chong Han, Zhi Chen: Attenuation and Loss of Spatial Coherence Modeling for Atmospheric Turbulence in Terahertz UAV MIMO Channels, arXiv:2308.10424v2, 2023.
- [18] Chen B. Ji, Z., Mumtaz S., Han C., Li C., Wen H., and Wang D.: A vision of IoV in 5G HetNets: Architecture, key technologies, applications, challenges, and trends, IEEE Network, vol. 36, no. 2, pp. 153–161, Mar. 2022.
- [19] Cui M., Wu Z., Lu Y. et al.: Near-Field MIMO Communications for 6G: Fundamentals Challenges Potentials and Future Directions, IEEE Communications Magazine, vol. 61, no. 1, pp. 40-46, 2023.
- [20] Kim T., Kim H., Choi S., and Hong D.: How Will Cell-Free Systems Be Deployed?, IEEE Communications Magazine, vol. 60, no. 4, pp. 46-51, April 2022, doi: 10.1109/MCOM.001.2100533.
- [21] Zhang Y., Hu Q., Peng M., Liu Y., Zhang G., and Jiang T.: Interdependent Cell-free and Cellular Networks: Thinking the Role of Cell-free Architecture for 6G, IEEE Network, doi: 10.1109/ MNET.2023.3336218.
- [22] Di Renzo M., Zappone, A., Debbah M., Alouini M.S., Yuen C., De Rosny J., Tretyakov S.: Smart radio environments empowered by reconfigurable intelligent surfaces: How it works, state of research, and the road ahead, IEEE J. Sel. Areas Commun. 2020, 38, 2450–2525.
- [23] E Silva JDS, Ribeiro JAP, Adanvo VF, Mafra SB, Mendes LL, Li Y, de Souza RAA.: A Survey on the Impact of Intelligent Surfaces in the Terahertz Communication Channel Models, Sensors (Basel). 2023 Dec 20;24(1):33. doi: 10.3390/s24010033. PMID: 38202894; PMCID: PMC10780764.
- [24] Yuanwei Liu, Xiao Liu, Xidong Mu, Tianwei Hou, Jiaqi Xu, Marco Di Renzo, Naofal Al-Dhahir: Reconfigurable Intelligent Surfaces: Principles and Opportunities, IEEE Communications Surveys and Tutorials, VOL. 23, NO. 3, THIRD QUARTER 2021Rotshild D., Rahamim E., Abramovich A.: Innovative reconfigurable metasurface 2-D Beam-Steerable reflector for 5G wireless communication, Electronics, 2018.
- [25] Rahamim E., Rotshild E., Abramovich A.: Performance Enhancement of Reconfigurable Metamaterial Reflector Antenna by Decreasing the Absorption of the Reflected Beam, Applied Science, 2021. Rotshild D., Abramovich A.: Realization and validation of continuous tuneable metasurface for high resolution beam steering reflector at K-band frequency, International Journal of RF Microwave Computer Aided Eng. 2021.
- [26] Abramovich A., Rozban D., Rotshild D., Rahamim E., Barom A., Yosef R., Bhanam L.: Steer by Image Technology for Intelligent Reflecting Surface 2 based on Reconfigurable Metasurface beyond 5G communication, Crystals, 2022.
- [27] Jiang W. et al.: Terahertz Communications and Sensing for 6G and Beyond: A Comprehensive Review, IEEE Communications Surveys & Tutorials, doi: 10.1109/COMST.2024.3385908.
- [28] Demirhan U. and Alkhateeb A.: Integrated sensing and communication for 6G: Ten key machine learning roles, arXiv:2208.02157, 2022.
- [29] Samczyński P., Abratkiewicz K., Płotka M., Zieliński T. P., Wszołek J., Hausman S., Korbel P., Księżyk A.: 5G Network-Based Passive Radar, IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1-9, 2022, Art no. 5108209, doi: 10.1109/TGRS.2021.3137904Zandonella C.: Terahertz imaging: T-ray specs, Nature, vol. 424, no. 6950, p. 721, Aug. 2003.
- [30] Abbasi Q. H. et al.: Nano-communication for biomedical applications: A review on the state-of-the-art from physical layers to novel networking concepts, IEEE Access, vol. 4, pp. 3920 – 3935, Jul. 2016.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-da847b9b-2018-4ad0-b54f-051071617a74