PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Processing of Titanium-Magnesium Production Waste

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article presents the results of research on the processing of such wastes of titanium-magnesium production as sludge from sludge dumps and fine dump dusts from the electric smelting of ilmenite concentrates. The results of nitric acid leaching of sludge with the transfer of calcium into solution and the production of calcium nitrate are given. Titanium-containing cake after nitric acid leaching of sludge and electric smelting dust cannot be returned to the technological process due to its high silica content, so the silicon impurity was removed from their composition. Silicon removal was performed by fluoroammonium processing with sublimation of hexafluorosilicate compounds. An amorphous silicon dioxide product was obtained, after ammonia hydrolysis of silicon-containing sublimations and appropriate treatment of the sediment. The residue from the sublimation of silicon fluorides consists mainly of titanium-containing phases and can be suitable for return for electrofusion after ammonia treatment.
Rocznik
Strony
215--225
Opis fizyczny
Bibliogr. 31 poz., rys., tab.
Twórcy
  • Institute of Metallurgy and Ore Benefication, Satbayev University, JSC, Shevchenko St., 29/133, KR 050010, Almaty, Kazakhstan
  • Institute of Metallurgy and Ore Benefication, Satbayev University, JSC, Shevchenko St., 29/133, KR 050010, Almaty, Kazakhstan
autor
  • Institute of Metallurgy and Ore Benefication, Satbayev University, JSC, Shevchenko St., 29/133, KR 050010, Almaty, Kazakhstan
  • Institute of Metallurgy and Ore Benefication, Satbayev University, JSC, Shevchenko St., 29/133, KR 050010, Almaty, Kazakhstan
  • Institute of Metallurgy and Ore Benefication, Satbayev University, JSC, Shevchenko St., 29/133, KR 050010, Almaty, Kazakhstan
Bibliografia
  • 1. Abisheva Z.S., Karshigina Z.B., Bochevskaya Ye.G., Ata Akcil, Sargelova E.A., Kvyatkovskaya M.N., Silachyov I.Yu. 2017. Recovery of rare earth metals as critical materials from phosphorus slag of long-term storage. Hydrometallurgy, 173, 271–282.
  • 2. Akcil A., Karshigina Z.B., Bochevskaya Y.G., Abisheva Z.S. 2018. Conditions of nitric acid treatment of phosphorus slag for REMs recovery and production of precipitated silicon dioxide. Kompleksnoe Ispolʹzovanie Mineralʹnogo syrʹâ, 305(2), 28–38. https://doi.org/10.31643/2018/6445.4
  • 3. Andreev A.A., Dyachenko A.N. 2009. Method of processing of raw materials containing titanium. Patent RU 2365647. 2009-08-27.
  • 4. Barksdale J. 1966. Titanium: its Occurrence, Chemistry and Technology. Ronald Press. 2nd Revised edition, New York, 691.
  • 5. Baybekov M.K., Popov V.D., Cheprasov I.M. 1987. Production of titanium tetrachloride. Metallurgy, Moscow, 108–110. (in Russian)
  • 6. Belonozhko N.D., Pogorelov V.I., Tatibaev K.K. 1988. Semi-industrial testing of the technology for obtaining technical niobium hydroxide from titanium production waste.1988. New in the theory and practice of metallurgy of non-ferrous and rare metals. Alma-Ata, IMiO AS KazSSR, 230. (in Russian)
  • 7. Weizmann C., Blumenfeld J. 1925. Improvements relating to the treatment of solutions for the separation of suspended matter. UK Patent 228814A. IPC C01F15/00 (EP); C01G19/00 (EP); C01G23/001 (EP), 1925-02-03.
  • 8. Chervony I.F., Listopad D.A., Ivashchenko V.I., Sorokina L.V. 2008. On the physical and chemical laws of the formation of titanium sponge. Scientific works “Donetsk National Technical University”. Metallurgy, Donetsk, 10(141), 37–46. (in Russian)
  • 9. Diachenko A.N. 2006. Fluoroammonium method for producing titanium dioxide. Technical science. Bulletin of Tomsk Polytechnic University, Tomsk, 309(3), 99–102.
  • 10. Dmitriev A.N., Smorokov A.A., Kantaev A. S. 2021. Fluoroammonium method of titanium slag processing. Ferrous metallurgy, 64(3), 178–183. (in Russian)
  • 11. Fedun M.P., Bakanov V.K., Pastikhin V.V. 2005. Method for processing titanium-silicon-containing concentrates. Patent RU 2264478. 2005-11-20.
  • 12. Gao F., Nie Z., Yang D., Sun B., Liu Y., Gong X., Wang Z. 2018. Environmental impacts analysis of titanium sponge production using Kroll process in China. Journal of Cleaner Production, 174, 771–779. DOI: 10.1016/j.jclepro.2017.09.240
  • 13. Goldinov A.L., Kopylev B.A., Abramov O.B., Dmitrievsky B.A. 1982. Complex nitric acid processing of phosphate raw materials. Chemistry, Leningrad, 208. (in Russian)
  • 14. Helmboldt I.N., Ganin E.V., Sergienko V.S., Minacheva L.Kh. 2004. An unusual way to obtain and the crystal structure of hydroxonium hexafluorosilicate - the simplest “hydrate” of fluorosilicic acid. Coordinating chemistry, 30(9), 720. (in Russian)
  • 15. Jorjani E., Bagherieh A.H., Chelgani S.C. 2011. Rare earth elements leaching from Chadormalu apatite concentrate: Laboratory studies and regression predictions. Korean Journal of Chemical Engineering, 28(2), 557–562.
  • 16. Kantaev A.S., Andreev A.A., Diachenko A.N., Pakhomov D.S. 2011. Procedure for extraction of rutile from ilmenite. Patent RU 2432410, 2011-10-27, Bul. 30.
  • 17. Klevke V.A., Polyakov N.N., Arsenyeva L.Z. 1956. Technology of nitrogen fertilizers. Goshimizdat, Moscow, 289. (in Russian)
  • 18. Lidin R.A., Andreeva L.L., Molochko V.A., 2000. Chemical properties of inorganic substances: Textbook for universities. 3rd ed., Corrected. Chemistry, Moscow, 480. (in Russian)
  • 19. Mecklenburg Werner. 1930. US Patent 1758528A. IPC C01G23/053 (EP); Production of titanium dioxide, 1930-05-13.
  • 20. Melnichenko E.I. 2002. Fluoride processing of rare metal raw materials of the Far East. Dalnauka, Vladivostok. (in Russian)
  • 21. Monir A.M., Nabawia Mohammed A. 1999. Recovery of lanthanides from Abu Tartur phosphate rock, Egypt. Hydrometallurgy, 52, 199–206.
  • 22. Mukhanova A., Tussupbayev N., Turysbekov D., Yessengaziyev A. 2022. Improvement of the selection technology of copper-molybdenum concentrate with the use of modified flotoragents. Metalurgija, 1, 221–224.
  • 23. Nasekan Y.P., Chervony I.F., Kolyada V.P., Mezentseva E.V. 2011. On the hydrochemical opening of silica from kaolin by the fluoride method. Metallurgist, 5, 25–30. (in Russian)
  • 24. Ospanov K., Kuldeyev E., Kenzhaliyev B., Korotunov A. 2022. Wastewater Treatment Methods and Sewage Treatment Facilities in Almaty, Kazakhstan. Journal of Ecological Engineering, 23(1), 240–251. https://doi.org/10.12911/22998993/143939
  • 25. Liu Q., Baker P., Zhao H. 2015. Titanium sponge production technology in China. Proceedings of the 13th World Conference on Titanium. San Diego, California, USA, 177–182.
  • 26. Rimkevich V.S., Pushkin A.A., Malovitsky Y.N., Yeranskaya T.Y., Girenko I.V. 2010. Complex processing of kaolin concentrates by means of fluoride metallurgy. Izvestiya vuzov. Non-ferrous metallurgy, 2, 29–36. (in Russian)
  • 27. Teploukhov A.S. 2005. Prevention of water bodies pollution by waste products of titanium-magnesium production. Abstract of diss. cand. tech. Sciences, Ural State Forest Engineering University, Yekaterinburg, 143. (in Russian)
  • 28. Ultarakova А., Kenzhaliyev B., Onayev M., Yessengaziyev A., Kassymzhanov K. 2019. Investigations of Waste Sludge of Titanium Production and Its Leaching by Nitric Acid. 19th International Multidisciplinary Scientific GeoConference, Science and Technologies in Geology, Exploration and Mining – SGEM 2019. Albena, Bulgaria 2019, 19(1.3), 861–868.
  • 29. Weintraub G. 1912. Process of obtaining titanic oxid. US Patent 1014793A. IPC C22B34/125 (EP, US); Y10S423/02 (EP), 1912-01-16.
  • 30. World titanium market: trends and prospects. URL: http://www.ereport.ru/articles/commod/titanium.htm, (date of appeal 12.05.2018).
  • 31. Yessengaziyev A., Ultarakova А., Lokhova N., Karshigina Z., Kassymzhanov K. 2021. Study of the Alkaline Treatment Effect on Separation of Silica from the Electric Melting Dust of Ilmenite Concentrates. XXIth International Multidisciplinary Scientific GeoConference, Science and Technologies in Geology, Exploration and Mining – SGEM 2021. Albena, Bulgaria 2021, 1.1, 601-609. DOI: 10.5593/sgem2021/1.1/s04.073
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-da83a5d6-6cb2-47d8-80ee-d7684a5a99c8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.