PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

The ability of S.aureus to form biofilm on the Ti-6Al-7Nb scaffolds produced by Selective Laser Melting and subjected to the different types of surface modifications

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The Gram-positive coccus, Staphylococcus aureus, is the leading etiologic agent of limb and life-threatening biofilm-related infections in the patients following the orthopaedic implantations. The aim of the present paper is to estimate the ability of S. aureus to form biofilm on titanium alloy (Ti-6Al-7Nb) scaffolds produced by Selective Laser Melting (SLM) and subjected to the different types of surface modifications, including ultrasonic cleaning and chemical polishing. The results obtained indicate significantly the decreased ability of S.aureus to form biofilm on the surface of scaffolds subjected to the chemical polishing in comparison to the scaffolds cleaned ultrasonically. The data provided can be useful for future applications of the SLM technology in production of Ti-6Al-7Nb medical implants.
Słowa kluczowe
Rocznik
Strony
69--76
Opis fizyczny
Bibliogr. 28 poz., rys., tab., il.
Twórcy
autor
  • Centre for Advanced Manufacturing Technologies, Wrocław University of Technology, Wrocław, Poland
autor
  • Department of Microbiology of Wrocław Medical University, Wrocław, Poland
  • Centre for Advanced Manufacturing Technologies, Wrocław University of Technology, Wrocław, Poland
autor
  • Department of Microbiology of Wrocław Medical University, Wrocław, Poland
  • Department of Microbiology of Wrocław Medical University, Wrocław, Poland
autor
  • Centre for Advanced Manufacturing Technologies, Wrocław University of Technology, Wrocław, Poland
Bibliografia
  • [1] BJARNSHOLT T., Biofilm Infections, Springer Science, 2011, ISBN 978-1-4419-6083-2.
  • [2] BLACK C.E, COSTERTON W., Current concepts regarding the effect of wound microbial ecology and biofilms on wound healing, The Surgical Clinics of North America. 2010, 6, 1147–1160.
  • [3] FLEMMING H., WINGENDER J., SZEWCZYK U., Biofilm Highlights, Springer Series on Biofilm 2008, Vol. 5, ISBN 978-3-642-19939-4.
  • [4] SHUNMUGAPERUMAL T., Biofilm eradication and prevention: a Pharmaceutical Approach to Medical Device Infections, John Wiley & Sons, New York, 2010.
  • [5] FUX C. et al., Bacterial biofilms: diagnostic and therapeutic challenge, Expert Rev. Anti. Infect. Ther., 2003, 4, 667–683.
  • [6] MURDOCH D.R., ROBERTS S.A., FOWLER V.G., Infection of orthopaedic prostheses after Staphylococcus aureusbacteremia, Clin. Infect. Dis., 2001, 32, 647–649.
  • [7] KRZEMIŃSKI M., BARTOSZEWICZ M., CZARNIAK E., GREGOROWICZ-WARPAS D., MĄCZYŃSKA B., JUNKA A., The use of octenidine dihydrochloride in the treatment of musculoskeletal infections, Adv. Clin. Exp. Med., 2010, 19, 631–636.
  • [8] AN Y.H., FRIEDMAN R.J., Concise review of mechanisms of bacterial adhesion to biomaterial surfaces, J. Biomed. Mater. Res., 1998, 43, 338–348.
  • [9] KRZAK-ROŚ J., FILIPIAK J., PEZOWICZ C., BASZCZUK A., MILLER M., KOWALSKI M., BĘDZIŃSKI R., The effect of substrate roughness on the surface structure of TiO2, SiO2, and doped thin films prepared by the sol-gel method, Acta of Bioengineering and Biomechanics, 2009, Vol. 11, No. 2.
  • [10] MONTARO L., SPEZIALE P., CAMPOCCIA D., Scenery of Staphylococcus implant infections, Future Microbiol., 2011, 6, 1329–1349.
  • [11] DUNNE N.J., HILL J., MCAFFE P., Incorporation of large amounts of gentamicin sulphate into acrylic bone cement: effect on handling and mechanical properties, antibiotic release and biofilm formation, Proc. Inst. Mech. Eng. H., 2008, 222, 355–365.
  • [12] LIU X., CHU P.-K., DING C., Surface modification of titanium, titanium alloys, and related materials for biomedical application, Materials Science and Engineering, 2004, R47, 49–121.
  • [13] LÓPEZ M.-F., GUTIÉRREZ A., JIMÉNEZ J.-A., In vitro corrosion behavior of titanium alloys without vanadium, Electrochimica Acta, 2002, 47, 1359–1364.
  • [14] VAN BEAL S., CHAI Y.C., TRUSCELLO S., The effect of pore geometry on the in vitro biological behavior of human periosteum-derived cells seeded on selective laser-melted Ti6Al4V bone scaffolds, Acta Biomaterialia, 2012, 8, 2824–2834.
  • [15] YADROITSEV I., BERTRAND P.H., SMUROV I., Parametric analysis of the selective laser melting process, Applied Surface Science, 2007, 8064–8069.
  • [16] DEEPAK K., PATTANAYAK, FUKUDA A., MATSUSHITA T., TAKEMOTO M., FUJIBAYASHI S., SASAKI K., NISHIDA N., NAKAMURA T., KOKUBO T., Bioactive Ti metal analogous to human cancellous bone: Fabrication by selective laser melting
  • and chemical treatments, Acta Biomaterialia, 2011, 7, 1398–1406.
  • [17] HOLLISTER S.J. et al., Engineering craniofacial scaffolds, Orthodontics & Craniofacial Research, 2005, 8, 162–173.
  • [18] CHLEBUS E., KUŹNICKA, B., KURZYNOWSKI T., DYBAŁA B., Microstructure and mechanical behaviour of Ti-6Al-7Nb alloy produced by selective laser melting, Materials Characterization, 2011, 62, 488–495.
  • [19] KURZYNOWSKI T., CHLEBUS E., KUŹNICKA B., REINER J., Parameters in selective laser melting for processing metallic powders, Proceedings of SPIE – The International Society for Optical Engineering 8239, San Francisco, 2012; art. no. 823914.
  • [20] GARRETT E.R., ABHAY S.P., DIMITRIOS P.A., Porous titanium scaffolds fabricated using a rapid prototyping and powder metallurgy technique, Biomaterials, 2008, 3625–3635.
  • [21] HO SAEY TUAN, HUTMACHER D.W., Application of micro CT and computation modeling in bone tissue engineering, Computer-Aided Design, 2005, 37, 1151–1161.
  • [22] MORRIS D.E., MATHER M.L., Time-optimized X-ray micro-CT imaging of polymer based scaffolds, Appl. Biomater., 2012, 100B, 360–367.
  • [23] YE TAN, KIM K., Material Dependent Thresholding for Dimensional X-ray Computed Tomography, International Symposium on Digital Industrial Radiology and Computed Tomography,Berlin, Germany, 2011.
  • [24] SHUNMUGAPERUMAL T., Biofilm eradication and prevention, John Wiley & Sons, ISBN 978-0470-47996, 2010.
  • [25] CHANDRAMOHAN D., MARIMUTHU K., Characterization of natural fibers and their application in bone grafting substitutes, Acta of Bioengineering and Biomechanics, 2011, Vol. 13, No. 1.
  • [26] SŁOWIŃSKI J., Procedure of generating the individually matched bone scaffolds, Acta of Bioengineering and Biomechanics, 2011, Vol. 13, No. 3.
  • [27] ZIMMERLI W., OCHSNER P.E., Management of infection associated with prosthetic joints, Infection, 2003, 31(2), 99–108.
  • [28] MAHMOUD GAD G.F., ABDEL AZIZ A.A., IBRAHEM R.A., In-vitro adhesion of Staphylococcus spp. to certain orthopedic biomaterials and expression of adhesion genes, J. App. Pharm. Sci., 2012, 02 (06), 2012, 145–149
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-da8156f6-8ca4-4e16-a447-c931504526af
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.