PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Methodology of heat transfer and flow resistance measurement for matrices of rotating regenerative heat exchangers

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The theoretical basis for the indirect measurement approach of mean heat transfer coefficient for the packed bed based on the modified single blow technique was presented and discussed in the paper. The methodology of this measurement approach dedicated to the matrix of the rotating regenerative gas heater was discussed in detail. The testing stand consisted of a dedicated experimental tunnel with auxiliary equipment and a measurement system are presented. Selected experimental results are presented and discussed for selected types of matrices of regenerative air preheaters for the wide range of Reynolds number of gas. The agreement between the theoretically predicted and measured temperature profiles was demonstrated. The exemplary dimensionless relationships between Colburn heat transfer factor, Darcy flow resistance factor and Reynolds number were presented for the investigated matrices of the regenerative gas heater.
Rocznik
Strony
341--358
Opis fizyczny
Bibliogr. 19 poz., rys., tab.
Twórcy
  • Bialystok University of Technology, Faculty of Mechanical Engineering, ul. Wiejska 45C, 15-351 Bialystok, Poland
autor
  • Institute Fluid Flow Machinery of PASc, ul. J. Fiszera 14, 80-231 Gdańsk, Poland
  • Institute Fluid Flow Machinery of PASc, ul. J. Fiszera 14, 80-231 Gdańsk, Poland
  • Bialystok University of Technology, Faculty of Mechanical Engineering, ul. Wiejska 45C, 15-351 Bialystok, Poland
autor
  • Bialystok University of Technology, Faculty of Mechanical Engineering, ul. Wiejska 45C, 15-351 Bialystok, Poland
  • Institute Fluid Flow Machinery of PASc, ul. J. Fiszera 14, 80-231 Gdańsk, Poland
autor
  • Bialystok University of Technology, Faculty of Mechanical Engineering, ul. Wiejska 45C, 15-351 Bialystok, Poland
autor
  • RAFAKO S.A., Design Team K132, ul. Łąkowa 33, 47-400 Racibórz, Poland
Bibliografia
  • 1. Anzelius A., 1926. Über Erwärmung vermittels durchströmender Medien. Zeitschrift für Angewandte Mathematik und Mechanik, 6, 291–294.
  • 2. Björck Å., Dahlquist G., 1987. Numerical methods. PWN, Warszawa (in Polish).
  • 3. Butrymowicz D., Skiepko T., Karwacki J., Kwidziński R., Lackowski M., Przybyliński T., Gagan J., Śmierciew K., 2013. Analysis and experimental investigations of selected types of heating elements of rotational air preheaters OPP in terms of geometry and thermal and flow characteristics. Technical Report No. C2 - 11/2012, Gdansk (in Polish).
  • 4. Cai Z.H., Li M.L., Wu Y.W., Ren H.S., 1984. A modified selected point matching technique for testing compact heat exchanger surfaces. Int. J. Heat Mass Transfer, 27, 971-978. DOI: 10.1016/0017-9310(84)90113-3.
  • 5. Chang Z.-Ch., Hung M.-Sh., Ding P.-P., Chen P.-H., 1999. Experimental evaluation of thermal performance of Gifford–McMahon regenerator using an improved single-blow model with radial conduction. Int. J. Heat Mass Transfer, 42, 405-413. DOI: 10.1016/S0017-9310(98)00186-0.
  • 6. Chen P.-H., Chang Z.-Ch., 1996. An improved model for the single-blow measurement including the non-adiabatic side wall effect. Int. Commun. Heat Mass Transfer, 23, 55-68. DOI: 10.1016/0735-1933(95)00084-4.
  • 7. Chen P.-H., Chang Z.-Ch., 1997. Measurements of thermal performance of cryocooler regenerators using an improved single-blow method. Int. J. Heat Mass Transfer, 40, 2341-2349. DOI: 10.1016/S0017-9310(96)00300-6.
  • 8. Crump K.S., 1976. Numerical inversion of Laplace transforms using a Fourier series approximation. J. Assoc. Comput. Mach., 23, 89-96. DOI: 10.1145/321921.321931.
  • 9. Furnas C.C., 1932. Heat transfer from a gas stream to a bed of broken solids. US Bureau of Mines Bulletin, 361.
  • 10. Howard C.P., 1964. The single blow problem including the effects of longitudinal conduction. ASME 1964 Gas Turbine Conference and Products Show, Houston TX, USA. Paper No. 64-GTP-11, pp. V001T01A011.
  • 11. Kays W.M., London A.L., 1997. Compact heat exchangers. McGraw-Hill.
  • 12. Larsen F.W., 1967. Rapid calculation of temperature in a regenerative heat exchanger having arbitrary initial solid and entering fluid temperatures. Int. J. Heat Mass Transfer, 10, 149-168. DOI: 10.1016/0017-9310(67)90095-6.
  • 13. Leong K.C., Toh K.C., 1999. An experimental investigation of heat transfer and flow friction characteristics of louvered fin surfaces by the modified single blow technique. Heat Mass Transfer, 35, 53-63. DOI: 10.1007/s002310050298.
  • 14. Liang C.Y., Yang. W.-J., 1975. Modified single-blow technique for performance evaluation on heat transfer surfaces. J. Heat Transfer, 97, 16-21. DOI: 10.1115/1.3450280.
  • 15. Locke G.L., 1950. Heat transfer and flow friction characteristics of porous solids. Technical Report No. 10. Department of Mechanical Engineering, Stanford University, Stanford CA, USA.
  • 16. Luo X., Roetzel W., Lüdersen U., 2001. The single-blow transient testing technique considering longitudinal core conduction and fluid dispersion. Int. J. Heat Mass Transfer, 44, 121-129. DOI: 10.1016/S0017-9310(00)00089-2.
  • 17. Schumann T.E.W., 1929. Heat transfer: A liquid flowing through porous prism. J. Franklin Inst., 208, 405-416. DOI: 10.1016/S0016-0032(29)91186-8.
  • 18. Pucci P.F., Howard C.P., Piersall C.H. Jr., 1967. The single-blow transient testing technique for compact heat exchanger surfaces. J. Eng. Power, 89, 29-38. DOI: 10.1115/1.3616604.
  • 19. Stehfest H., 1970. Algorithm 368: Numerical inversion of Laplace transforms. Commun. ACM, 13, 47-49. DOI: 10.1145/361953.361969.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-da7c1b9a-ddfb-4f35-87d4-675e0073ed3d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.