Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The paper investigates a context-aware approach to radio resource allocation for device-to-device (D2D) communication, focusing on solutions that leverage information on user equipment location and environmental features, such as building layouts. A system enabling direct communication by sharing uplink resources with cellular users is considered. Such a system introduces mutual interference between direct and cellular communications, posing challenges related to maintaining adequate performance levels. To address these challenges, various context-based resource allocation methods are analyzed, aiming to optimize spectral efficiency and minimize interference. The study explores the impact that different D2D device densities exert on overall network performance measured by means of spectral efficiency and the signal-to-interference ratio.
Słowa kluczowe
Rocznik
Tom
Strony
47--55
Opis fizyczny
Bibliogr. 30 poz., rys. tab., wykr.
Twórcy
autor
- Poznan University of Technology, Poznań, Poland
Bibliografia
- [1] J. Gu, S.J. Bae, B.-G. Choi, and M.Y. Chung, “Dynamic Power Control Mechanism for Interference Coordination of Device-to-Device Communication in Cellular Networks”, 2011 Third Internat. Conference on Ubiquitous and Future Networks (ICUFN), Dalian, China, 2011 (https://doi.org/10.1109/icufn.2011.5949138).
- [2] P. Janis et al., “Interference-aware Resource Allocation for Device-to-Device Radio Underlaying ellular Networks”, VTC Spring 2009 –IEEE 69th Vehicular Technology Conference, Barcelona, Spain, 2009 (https://doi.org/10.1109/VETECS.2009.5073611).
- [3] S. Sharma and B. Singh, “Weighted cooperative reinforcement learning-based energy-efficient autonomous resource selection strategy for underlay D2D communication”, IET Communications, vol. 13, no. 14, pp. 2078–2087, 2019 (https://doi.org/10.1049/ietcom.2018.6028).
- [4] N. Reider and G. Fodor, “A Distributed Power Control and Mode Selection Algorithm for D2D Communications”, EURASIP Journal on Wireless Communications and Networking, vol. 2012, art. no. 266, 2012 (https://doi.org/10.1186/1687-1499-2012-266).
- [5] J. Seppala, T. Koskela, T. Chen, and S. Hakola, “Network Controlled Device-to-Device (D2D) and Cluster Multicast Concept for LTE and LTE-A Networks”, 2011 IEEE Wireless Communications and Networking Conference, Cancun, Mexico, 2011 (https://doi.org/10.1109/wcnc.2011.5779270).
- [6] C.-H. Yu, O. Tirkkonen, K. Doppler, and C. Ribeiro, “On the Performance of Device-to-Device Underlay Communication with Simple Power Control”, VTC Spring 2009 – IEEE 69th Vehicular Technology Conference, Barcelona, Spain, 2009 (https://doi.org/10.1109/vetecs.2009.5073734).
- [7] C.-H. Yu, O. Tirkkonen, K. Doppler, and C. Ribeiro, “Power Optimization of Device-to-Device Communication Underlaying Cellular Communication”, 2009 IEEE International Conference on Communications, Dresden, Germany, 2009 (https://doi.org/10.1109/icc.2009.5199353).
- [8] M. Zulhasnine, C. Huang, and A. Srinivasan, “Efficient Resource Allocation for Device-to-Device Communication Underlaying LTE Network”, 2010 IEEE 6th Int. Conference on Wireless and Mobile Computing, Networking and Communications, Niagara Falls, Canada, 2010 (https://doi.org/10.1109/wimob.2010.5645039).
- [9] M. Rodziewicz, “Location-based Power Control Mechanism for D2D Communication Underlaying a Cellular System”, Journal of Telecommunications and Information Technology, vol. 3, pp. 49–53, 2023 (https://doi.org/10.26636/jtit.2023.3.1361).
- [10] T. Islam and C. Kwon, “Survey on the State-of-the-art in Device-to-Device Communication: A Resource Allocation Perspective”, Ad Hoc Networks, vol. 136, art. no. 102978, 2022 (https://doi.org/10.1016/j.adhoc.2022.102978).
- [11] T. Rathod and S. Tanwar, “AI-based Resource Allocation Techniques in D2D Communication: Open Issues and Future Directions”, Physical Communication, vol. 66, art. no. 102423, 2024 (https://doi.org/10.1016/j.phycom.2024.102423).
- [12] Y. Zhi et al., “Deep Reinforcement Learning-based Resource Allocation for D2D Communications in Heterogeneous Cellular Networks”, Digital Communications and Networks, vol. 8, no. 5, pp. 834–842, 2022 (https://doi.org/10.1016/j.dcan.2021.09.013).
- [13] P. Bao and G. Yu, “An Interference Management Strategy for Device-to-Device Underlaying Cellular Networks with Partial Location Information”, 2012 IEEE 23rd International Symposium on Personal, Indoor and Mobile Radio Communications – (PIMRC), Sydney, Australia, 2012 (https://doi.org/10.1109/pimrc.2012.6362830).
- [14] X. Chen et al., “Downlink Resource Allocation for Device-to-Device Communication Underlaying Cellular Networks”, 2012 IEEE 23rd International Symposium on Personal, Indoor and Mobile Radio Communications – (PIMRC), Sydney, Australia, 2012 (https://doi.org/10.1109/pimrc.2012.6362746).
- [15] H. Min, J. Lee, S. Park, and D. Hong, “Capacity Enhancement Using an Interference Limited Area for Device-to-Device Uplink Underlaying Cellular Networks”, IEEE Transactions on Wireless Communications, vol. 10, no. 12, pp. 3995–4000, 2011 (https://doi.org/10.1109/twc.2011.100611.101684).
- [16] M. Rodziewicz, “Location-based Mode Selection and Resource Allocation in Cellular Networks with D2D Underlay”, European Wireless 2015 – 21th European Wireless Conference, Budapest, Hungary, 2015 (https://ieeexplore.ieee.org/document/7147698).
- [17] M. Rodziewicz, “Wykorzystanie Informacji o Rozmieszczeniu Budynków do Zarządzania Zasobami Komunikacji Bezpośredniej”, Przegląd Telekomunikacyjny – Wiadomości Telekomunikacyjne, vol. 1, no. 4, pp. 343–347, 2024 (https://doi.org/10.15199/59.2024.4.77) (in Polish).
- [18] H. Wang and X. Chu, “Distance-constrained Resource-sharing Criteria for Device-to-Device Communications Underlaying Cellular Networks”, Electronics Letters, vol. 48, no. 9, p. 528, 2012 (https: //doi.org/10.1049/el.2012.0451).
- [19] Y. Lv, X. Jia, C. Niu and N. Wan, “D2D Network Coverage Analysis Based on Cluster User Equipment Classification and Spectrum Sharing Allocation”, 2020 IEEE 6th International Conference on Computer and Communications (ICCC), Chengdu, China, 2020 (https://doi.org/10.1109/ICCC51575.2020.9345149).
- [20] K. Doppler et al., “Device-to-Device Communication as an Underlay to LTE-advanced Networks”, IEEE Communications Magazine, vol. 47, no. 12, pp. 42–49, 2009 (https://doi.org/10.1109/mcom.2009.5350367).
- [21] X. Li et al., “Resource Allocation for Underlay D2D Communication with Proportional Fairness”, IEEE Transactions on Vehicular Technology, vol. 67, no. 7, pp. 6244–6258, 2018 (https: //doi.org/10.1109/tvt.2018.2817613).
- [22] X. Li, L. Ma, Y. Xu, and R. Shankaran, “Resource Allocation for D2D-based V2X Communication with Imperfect CSI”, IEEE Internet of Things Journal, vol. 7, no. 4, pp. 3545–3558, 2020 (https://doi.org/10.1109/jiot.2020.2973267).
- [23] M. Botsov, S. Stanczak, and P. Fertl, “Comparison of Location-Based and CSI-Based Resource Allocation in D2D-enabled Cellular Networks”, 2015 IEEE International Conference on Communications (ICC), London, UK, 2015 (https://doi.org/10.1109/icc.2015.7248705).
- [24] N.P. Kuruvatti et al., “Robustness of Location Based D2D Resource Allocation against Positioning Errors”, 2015 IEEE 81st Vehicular Technology Conference (VTC Spring), Glasgow, UK, 2015 (https://doi.org/10.1109/vtcspring.2015.7146069).
- [25] P. Wang et al., “Location-partition-based Channel Allocation and Power Control Methods for C-V2X Communication Networks”, Wireless Networks, vol. 26, no. 3, pp. 1563–1575, 2019 (https://doi.org/10.1007/s11276-019-02206-0).
- [26] X. Xie, J. Shi, and Q. Yang, “Location Based Channel Resource Allocation for V2V Communications”, 2022 IEEE 16th International Conference on Anti-counterfeiting, Security, and Identification (ASID), Xiamen, China, 2022 (https://doi.org/10.1109/asid56930.2022.9995793).
- [27] METIS, “Mobile and Wireless Communications Enablers for the Twenty-twenty Information”, ICT-317669-METIS/D6.1, 2013 [Online]. Available: https://cordis.europa.eu/docs/projects/cnect/9/317669/080/deliverables/001-METISD61v1pdf
- [28] K. Bąkowski, K. Wesołowski, and M. Rodziewicz, “Simulation Tools for the Evaluation of Radio Interface Technologies for IMT-Advanced and Beyond”, in: Simulation Technologies in Networking and Communications, pp. 365–390, 2014 (https://doi.org/10.1201/b17650).
- [29] V. Nurmela et al., “METIS D1.2: Initial Channel Models Based on Measurements”, ICT-317669-METIS/D1.2, 2014 [Online]. Available: https://www.researchgate.net/publication/262160344_METIS_D12_Initial_channel_models_based_on_measurements.
- [30] ITU, “ITU-R Recommendation P.1411. Propagation Data and Prediction Methods for the Planning of Short-Range Outdoor Radiocommunication Systems and Radio Local Area Networks in the Frequency Range 300 MHz to 100 GHz”, 2012.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-da746b74-6970-4265-9c01-6db7e1e59ddc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.