PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Neurocomputing approach for the prediction of NOx emissions from CFBC in air-fired and oxygen-enriched atmospheres

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents a way of predicting NOx emissions from circulating fluidized bed combustors (CFBC) in air-fired and oxyfuel conditions, using the Artificial Neural Network (ANN) Approach. The Original Neural Networks Model was successfully applied to calculate the NOx (i.e. NO + NO2) emissions from coal combustion under air-fired and oxygen-enriched conditions in several CFB boilers. The ANN model was shown to give quick and accurate results in response to the input pattern. The NOx emissions, evaluated using the developed ANN model are in good agreement with the experimental results.
Rocznik
Strony
75--84
Opis fizyczny
Bibliogr. 96 poz., rys., tab., wykr.
Twórcy
  • Jan Dlugosz University in Czestochowa, 13/15 Armii Krajowej Av., 42-200 Czestochowa, Poland
autor
  • AGH University of Science and Technology, 30 Mickiewicza Av., 30-054 Krakow, Poland
Bibliografia
  • [1] National Center for Environmental Assessment-RTP Division, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, EPA/600/R-08/082F. Integrated Science Assessment for Oxides of Nitrogen - Health Criteria (2008).
  • [2] L. Amand, B. Leckner, K. Dam-Johansen, Influence of SO2 on the NO/N2O chemistry in fluidized bed combustion: 1. full-scale experiments, Fuel 72 (1993) 557–564.
  • [3] L.-E. Åmand, B. Leckner, Influence of fuel on the emission of nitrogen oxides (NO and N2O) from an 8-MW fluidized bed boiler, Combustion and Flame 84 (1-2) (1991) 181–196.
  • [4] L. Amand, B. Leckner, The role of fuel volatiles for the emission of nitrogen oxides from fluidized bed boilers - a comparison between designs, in: Proc. of the 23rd International Symposium on Combustion, 1990, pp. 927–933.
  • [5] P. Basu, Combustion of coal in circulating fluidized-bed boilers: a review, Chemical Engineering Science 54 (22) (1999) 5547–5557.
  • [6] E. Bool, S. Laux, E. Eddings, Oxy-coal combustion in small-scale CFB, in: Proc. Of th 35th International Technical Conference on Clean Coal & Fuel Systems, Florida, USA, 2010, pp. 190–196.
  • [7] T. Czakiert, W. Muskala, S. Jankowska, G. Krawczyk, P. Borecki, L. Jesionowski, W. Nowak, The effect of oxygen concentration on nitrogen conversion in oxy-fuel CFB environment, in: 21 International Conference on fluidized bed combustion, Naples, Italy, 2012, pp. 495–502.
  • [8] F. Luis, C. A. Londono, X. S. Wang, B. M. Gibbs, Influence of operating parameters on nox and n2o axial profiles in a circulating fluidized bed combustor, Fuel 75 (8) (1996) 971–978.
  • [9] T. Eriksson, O. Sippu, A. Hotta, M. K. Zhen Fan, T. Hyppänen, T. Pikkarainen, Oxyfuel CFB boiler as a route to near zero CO2 emission coal firing, in: Power-GEN Europe, 2007, pp. 26–28.
  • [10] B. Feng, H. Liu, J.-W. Yuan, Z.-J. Lin, D.-C. Liu, B. Leckner, Nitrogen oxides emission from a circulating fluidized bed combustor, International Journal of Energy Research 20 (11) (1996) 1015–1025.
  • [11] A. Gungor, Prediction of so 2 and no x emissions for low-grade Turkish lignites in cfb combustors, Chemical Engineering Journal 146 (3) (2009) 388–400.
  • [12] A. Gungor, N. Eskin, Two-dimensional coal combustion modeling of cfb, International Journal of Thermal Sciences 47 (2) (2008) 157–174.
  • [13] A. Hayhurst, A. Lawrence, The amounts of nox and n2o formed in a fluidized bed combustor during the burning of coal volatiles and also of char, Combustion and flame 105 (3) (1996) 341–357.
  • [14] L. Jia, Y. Tan, D. McCalden, Y. Wu, I. He, R. Symonds, E. Anthony, Commissioning of a 0.8 mw th cfbc for oxy-fuel combustion, International Journal of Greenhouse Gas Control 7 (2012) 240–243.
  • [15] L. Jia, Y. Tan, Y. Wu, E. Anthony, Oxy-fuel combustion tests using a 0.8 mwth pilot-scale circulating fluidized bed, in: Proceedings of the 21st International Conference on Fluidized Bed Combustion, Naples, Italy, 2012, pp. 381–388.
  • [16] L. Jia, Y. Tan, E. Anthony, Emissions of so2 and no x during oxy- fuel cfb combustion tests in a mini-circulating fluidized bed combustion reactor, Energy & Fuels 24 (2) (2009) 910–915.
  • [17] L. Jia, Y. Tan, C. Wang, E. Anthony, Experimental study of oxy-fuel combustion and sulfur capture in a mini-cfbc, Energy & Fuels 21 (6) (2007) 3160–3164.
  • [18] T. Knöbig, J. Werther, L.-E. Åmand, B. Leckner, Comparison of largeand small-scale circulating fluidized bed combustors with respect to pollutant formation and reduction for different fuels, Fuel 77 (14) (1998) 1635–1642.
  • [19] B. Leckner, Fluidized bed combustion: mixing and pollutant limitation, Progress in Energy and Combustion Science 24 (1) (1998) 31–61.
  • [20] B. Leckner, L.-E. Åmand, K. Lücke, J. Werther, Gaseous emissions from co-combustion of sewage sludge and coal/wood in a fluidized bed, Fuel 83 (4) (2004) 477–486.
  • [21] B. Leckner, A. Lyngfelt, Optimization of emissions from fluidized bed combustion of coal, biofuel and waste, International journal of energy research 26 (13) (2002) 1191–1202.
  • [22] H. Liu, B. M. Gibbs, The influence of limestone addition at different positions on gaseous emissions from a coal-fired circulating fluidized bed combustor, Fuel 77 (14) (1998) 1569–1577.
  • [23] M. Liukkonen, M. Heikkinen, T. Hiltunen, E. Hälikkä, R. Kuivalainen, Y. Hiltunen, Artificial neural networks for analysis of process states in fluidized bed combustion, Energy 36 (1) (2011) 339–347.
  • [24] M. Liukkonen, T. Hiltunen, E. Hälikkä, Y. Hiltunen, Modeling of the fluidized bed combustion process and no x emissions using selforganizing maps: an application to the diagnosis of process states, Environmental Modelling & Software 26 (5) (2011) 605–614.
  • [25] D. Mao, J. R. Edwards, A. V. Kuznetsov, R. K. Srivastava, Threedimensional numerical simulation of a circulating fluidized bed reactor for multi-pollutant control, Chemical engineering science 59 (20) (2004) 4279-4289.
  • [26] N. Nsakala, G. Liljedahl, D. Turek, Greenhouse gas emissions control by oxygen firing in circulating fluidized bed boilers: Phase ii – pilot scale testing and updated performance and economics for oxygen fired CFB, Tech. rep., PPL Report No. PPL-04-CT-25 under cooperative agreement No. DE-FC26-01NT41146 (2004).
  • [27] G. Scheffknecht, L. Al-Makhadmeh, U. Schnell, J. Maier, Oxy-fuel coal combustion—a review of the current state-of-the-art, International Journal of Greenhouse Gas Control 5 (2011) S16–S35.
  • [28] Y. Tan, L. Jia, Y. Wu, E. Anthony, Experiences and results on a 0.8 mwth oxy-fuel operation pilot-scale circulating fluidized bed, Applied Energy 92 (2012) 343–347.
  • [29] M. B. Toftegaard, J. Brix, P. A. Jensen, P. Glarborg, A. D. Jensen, Oxyfuel combustion of solid fuels, Progress in energy and combustion science 36 (5) (2010) 581–625.
  • [30] T. Klajny, J. Krzywanski, W. Nowak, Mechanism and kinetics of coal combustion in oxygen enhanced conditions, in: 6th International Symposium on Coal Combustion, Wuhan, China, 2007, pp. 148–153.
  • [31] J. Zhao, C. Brereton, J. R. Grace, C. J. Lim, R. Legros, Gas concentration profiles and NOx formation in circulating fluidized bed combustion, Fuel 76 (9) (1997) 853–860.
  • [32] L. Duan, C. Zhao, W. Zhou, C. Qu, X. Chen, O 2/co 2 coal combustion characteristics in a 50kw th circulating fluidized bed, International Journal of Greenhouse Gas Control 5 (4) (2011) 770–776.
  • [33] T. Eriksson, K. Nuortimo, A. Hotta, K. Myöhänen, T. Hyppänen, T. Pikkarainen, Near zero co2 emissions in coal firing with oxyfuel cfb boiler, in: Proc. of the 9th International Conference on Circulating Fluidized Beds, Hamburg, Germany, May, 2008, pp. 13–16.
  • [34] A. Blaszczuk, W. Nowak, S. Jagodzik, Effects of operating conditions on denox system efficiency in supercritical circulating fluidized bed boiler, Journal of Power Technologies 93 (1) (2013) 1.
  • [35] A. Blaszczuk, M. Komorowski, W. Nowak, Distribution of solids concentration and temperature within combustion chamber of sc-otu cfb boiler, Journal of Power Technologies 92 (1) (2012) 27–33.
  • [36] B. Harris, J. Davidson, Modelling options for circulating fluidized beds: a core/annulus deposition model, Circulating fluidized bed technology IV (1994) 32.
  • [37] J. Krzywa´ nski, T. Czakiert, W. Muskała, W. Nowak, Modelling of CO2, CO, SO2, O2 and NOx emissions from the oxy-fuel combustion in a circulating fluidized bed, Fuel Processing Technology 92 (3) (2011) 590–596.
  • [38] J. Krzywanski, T. Czakiert,W. Muskala, R. Sekret,W. Nowak, Modeling of solid fuels combustion in oxygen-enriched atmosphere in circulating fluidized bed boiler: Part 1. The mathematical model of fuel combustion in oxygen-enriched CFB environment, Fuel Processing Technology 91 (3) (2010) 290–295.
  • [39] J. Krzywanski, T. Czakiert, W. Muskala, R. Sekret, W. Nowak, Modeling of solid fuel combustion in oxygen-enriched atmosphere in circulating fluidized bed boiler: Part 2. Numerical simulations of heat transfer and gaseous pollutant emissions associated with coal combustion in O2/CO2 and O2/N2 atmospheres enriched with oxygen under circulating fluidized bed conditions, Fuel Processing Technology 91 (3) (2010) 364–368.
  • [40] W. Muskała, J. Krzywiński, R. Sekret, W. Nowak, Model research of coal combustion in circulating fluidized bed boilers, Chemical and Process Engineering 29 (2008) 473–492.
  • [41] K. Myöhänen, T. Hyppänen, M. Loschkin, Converting measurement data to process knowledge by using three-dimensional cfb furnace model, in: The 8th International Conference on CFB, 2005.
  • [42] D. Pallares, F. Johnsson, M. Palonen, A comprehensive model of cfb combustion, in: 9th Int. Conf. on Circulating Fluidized Beds, 2008.
  • [43] M. Palonen, D. Pallarès, A. Larsson, F. Johnsson, V. Ylä-Outinen, J. Laine, Circulating fluidized bed combustion-build-up and validation of a three-dimensional model.
  • [44] T. Pikkarainen, A. Tourunen, H. Nevalainen, T. Leino, J. Saastamoinen, T. Eriksson, Small scale fluidized bed experiments under oxygen combustion conditions, in: International Conference on Coal Science & Techology, University of Nottingham UK, 2007.
  • [45] J. Saastamoinen, A. Tourunen, T. Pikkarainen, H. Häsä, J. Miettinen, T. Hyppänen, K. Myöhänen, Fluidized bed combustion in high concentrations of o2 and co2, in: 19th FBC Conference, 2006.
  • [46] J. Werther, Fluid dynamics, temperature and concentration fields in large-scale cfb combustors, in: 8-th International Conference on Circulating Fluidized Beds, 2005.
  • [47] N. Zhang, B. Lu, W. Wang, J. Li, 3D CFD simulation of combustion in a 150 MWe circulating fluidized bed boiler, in: Proc. of the 10-th International Conference on Circulating Fluidized Beds and Fluidization Technology - CFB-10, Sunriver, Oregon, USA, 2011, pp. 537–544.
  • [48] C. Zhao, W. Zhou, L. Duan, X. Chan, 2d Euler-Euler simulation of oxycoal combustion in a circulating fluidized bed., in: Proc. of the 21 International Conference on fluidized bed combustion, Naples, Italy, 2012, pp. 495–502.
  • [49] W. Zhou, C. Zhao, L. Duan, X. Chen, D. Liu, A simulation study of coal combustion under o 2/co 2 and o 2/rfg atmospheres in circulating fluidized bed, Chemical engineering journal 223 (2013) 816–823.
  • [50] W. Zhou, C. Zhao, L. Duan, X. Chen, C. Liang, Two-dimensional computational fluid dynamics simulation of nitrogen and sulfur oxides emissions in a circulating fluidized bed combustor, Chemical engineering journal 173 (2) (2011) 564–573.
  • [51] W. Zhou, C. Zhao, L. Duan, D. Liu, X. Chen, Cfd modeling of oxycoal combustion in circulating fluidized bed, International Journal of Greenhouse Gas Control 5 (6) (2011) 1489–1497.
  • [52] W. Zhou, C. Zhao, L. Duan, D. Liu, X. Chen, Simulation study of oxyfuel combustion in a circulating fluidized bed, in: The 35th International Technical Conference on Clean Coal & Fuel Systems, Clearwater, Florida, USA, 2010.
  • [53] K. K. Win, W. Nowak, H. Matsuda, M. Hasatani, Z. Bis, J. Krzywanski, W. Gajewski, Transport velocity of coarse particles in multi-solid fluidized bed, Journal of Chemical Engineering of Japan 28 (5) (1995) 535–540.
  • [54] J. Kotowicz, A. Balicki, Analysis of the thermodynamic and economic efficiency of supercritical power unit with cfb boiler fed with lignite and air separation unit based on high-temperature membrane technology, Journal of Power Technologies 93 (5) (2013) 308–313.
  • [55] D. Pallares, F. Johnsson, Macroscopic modelling of fluid dynamics in large-scale circulating fluidized beds, Progress in energy and combustion science 32 (5) (2006) 539–569.
  • [56] S. Kalogirou, Applications of artificial neural networks in energy systems, Energy Conversion and Management 40 (10) (1999) 1073–1087.
  • [57] C. Zhao, L. Dun, W. Zhou, X. Chen, D. Zeng, T. Flynn, D. Kraft, Coal combustion characteristics on an oxy-cfb combustor with warm flue gas recycle, in: Proceedings of the 21st International Conference on Fluidized Bed Combustion, 2012, pp. 3–6.
  • [58] R. R. Jensen, S. Karki, H. Salehfar, Artificial neural network-based estimation of mercury speciation in combustion flue gases, Fuel Processing Technology 85 (6) (2004) 451–462.
  • [59] U. Kesgin, Genetic algorithm and artificial neural network for engine optimisation of efficiency and nox emission, Fuel 83 (7) (2004) 885–895.
  • [60] F. Christo, A. Masri, E. Nebot, T. Turanyi, Utilising artificial neural network and repro-modelling in turbulent combustion, in: Neural Networks, 1995. Proceedings., IEEE International Conference on, Vol. 2, IEEE, 1995, pp. 911–916.
  • [61] S. Milanic, R. Karba, Neural network models for predictive control of a thermal plant, in: Proc. of the Int. Conf. EANN ’96, London, UK, 1996, pp. 151–154.
  • [62] B. Muller, H. Keller, Neural networks for combustion process modeling., in: Proc. of the Int. Conf. EANN ’96, London, UK, 1996, pp. 87–90.
  • [63] M. W. Gardner, S. Dorling, Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences, Atmospheric environment 32 (14) (1998) 2627–2636.
  • [64] S. Arumugam, G. Sriram, P. S. Subramanian, Application of artificial intelligence to predict the performance and exhaust emissions of diesel engine using rapeseed oil methyl ester, Procedia Engineering 38 (2012) 853–860.
  • [65] P. Boniecki, J. Dach, K. Pilarski, H. Piekarska-Boniecka, Artificial neural networks for modeling ammonia emissions released from sewage sludge composting, Atmospheric Environment 57 (2012) 49–54.
  • [66] C. Carnevale, G. Finzi, E. Pisoni, M. Volta, Neuro-fuzzy and neural network systems for air quality control, Atmospheric Environment 43 (31) (2009) 4811–4821.
  • [67] A. de Lucas, A. Durán, M. Carmona, M. Lapuerta, Modeling diesel particulate emissions with neural networks, Fuel 80 (4) (2001) 539–548.
  • [68] Z. Hao, C. Kefa, M. Jianbo, Combining neural network and genetic algorithms to optimize low no x pulverized coal combustion, Fuel 80 (15) (2001) 2163–2169.
  • [69] R. Karadag, Ö. Akgöbek, The prediction of convective heat transfer in floor-heating systems by artificial neural networks, International Communications in Heat and Mass Transfer 35 (3) (2008) 312–325.
  • [70] T. Kwater, Z. Kedzior, B. Twarog, Estimation by artificial neural network in ecological problems., in: Proc. AMSE-Conference MS’2001, Lviv, Ukraine, 2001, pp. 212–215.
  • [71] J. Krzywanski, W. Muskała, W. Nowak, Application of neural networks for determining of the convective heat transfer coefficient in a circulating fluidized bed, Power Engineering 11 (2008) 761–764.
  • [72] J. Krzywanski, W. Nowak, Modeling of heat transfer coefficient in the furnace of cfb boilers by artificial neural network approach, International Journal of Heat and Mass Transfer 55 (15) (2012) 4246–4253.
  • [73] Y. Miyamoto, Y. Kurosaki, H. Fujiyama, E. Nanbu, Dynamic characteristic analysis and combustion control for a fluidized bed incinerator, Control Engineering Practice 6 (9) (1998) 1159–1168.
  • [74] E. Molga, Neural network approach to support modelling of chemical reactors: problems, resolutions, criteria of application, Chemical Engineering and Processing: Process Intensification 42 (8) (2003) 675–695.
  • [75] S. S. Nagendra, M. Khare, Artificial neural network approach for modelling nitrogen dioxide dispersion from vehicular exhaust emissions, Ecological Modelling 190 (1) (2006) 99–115.
  • [76] L. E. Olcese, B. M. Toselli, A method to estimate emission rates from industrial stacks based on neural networks, Chemosphere 57 (7) (2004) 691–696.
  • [77] S. L. Reich, D. Gomez, L. Dawidowski, Artificial neural network for the identification of unknown air pollution sources, Atmospheric Environment 33 (18) (1999) 3045–3052.
  • [78] S. S. Sablani, A neural network approach for non-iterative calculation of heat transfer coefficient in fluid–particle systems, Chemical Engineering and Processing: Process Intensification 40 (4) (2001) 363–369.
  • [79] Ü. A. Sahin, C. Bayat, O. N. Uçan, Application of cellular neural network (cnn) to the prediction of missing air pollutant data, Atmospheric Research 101 (1) (2011) 314–326.
  • [80] S. Tasdemir, I. Saritas, M. Ciniviz, N. Allahverdi, Artificial neural network and fuzzy expert system comparison for prediction of performance and emission parameters on a gasoline engine, Expert Systems with Applications 38 (11) (2011) 13912–13923.
  • [81] A. Tuma, H.-D. Haasis, O. Rentz, Development of emission orientated production control strategies using fuzzy expert systems, neural networks and neuro-fuzzy approaches, Fuzzy sets and systems 77 (3) (1996) 255–264.
  • [82] Q. Wang, G. Xie, M. Zeng, L. Luo, Prediction of heat transfer rates for shell-and-tube heat exchangers by artificial neural networks approach, Journal of Thermal Science 15 (3) (2006) 257–262.
  • [83] M. Xiaomin, Recognition of toxic gases emission in power plant based on artificial neural network, Energy Procedia 17 (2012) 1578–1584.
  • [84] J. Zhang, F. Haghighat, Development of artificial neural network based heat convection algorithm for thermal simulation of large rectangular cross-sectional area earth-to-air heat exchangers, Energy and Buildings 42 (4) (2010) 435–440.
  • [85] Y. Zhang, Y. Ding, Z. Wu, L. Kong, T. Chou, Modeling and coordinative optimization of no x emission and efficiency of utility boilers with neural network, Korean Journal of Chemical Engineering 24 (6) (2007) 1118–1123.
  • [86] H. Zhou, K. Cen, J. Fan, Modeling and optimization of the nox emission characteristics of a tangentially fired boiler with artificial neural networks, Energy 29 (1) (2004) 167–183.
  • [87] B. P. Grandjean, et al., Special issue on application of neural networks to multiphase reactors (2003).
  • [88] C. Faur-Brasquet, P. Le Cloirec, Modelling of the flow behavior of activated carbon cloths using a neural network approach, Chemical Engineering and Processing: Process Intensification 42 (8) (2003) 645–652.
  • [89] H. Lin, W. Chen, A. Tsutsumi, Long-term prediction of nonlinear hydrodynamics in bubble columns by using artificial neural networks, Chemical Engineering and Processing: Process Intensification 42 (8) (2003) 611–620.
  • [90] A. Shaikh, M. Al-Dahhan, Development of an artificial neural network correlation for prediction of overall gas holdup in bubble column reactors, Chemical Engineering and Processing: Process Intensification 42 (8) (2003) 599–610.
  • [91] G. Bollas, S. Papadokonstadakis, J. Michalopoulos, G. Arampatzis, A. Lappas, I. Vasalos, A. Lygeros, Using hybrid neural networks in scaling up an fcc model from a pilot plant to an industrial unit, Chemical Engineering and Processing: Process Intensification 42 (8) (2003) 697–713.
  • [92] T. Abbas, M. Awais, F. Lockwood, An artificial intelligence treatment of devolatilization for pulverized coal and biomass in co-fired flames, Combustion and flame 132 (3) (2003) 305–318.
  • [93] J. Kukkonen, L. Partanen, A. Karppinen, J. Ruuskanen, H. Junninen, M. Kolehmainen, H. Niska, S. Dorling, T. Chatterton, R. Foxall, et al., Extensive evaluation of neural network models for the prediction of NO 2 and PM 10 concentrations, compared with a deterministic modelling system and measurements in central Helsinki, Atmospheric Environment 37 (32) (2003) 4539–4550.
  • [94] H. Ye, R. Nicolai, L. Reh, A bayesian–gaussian neural network and its applications in process engineering, Chemical Engineering and Processing: Process Intensification 37 (5) (1998) 439–449.
  • [95] W. Muskała, J. Krzywański, T. Czakiert, W. Nowak, The research of CFB boiler operation for oxygen-enhanced dried lignite combustion, Rynek Energii 1 (92) (2011) 172–176.
  • [96] J. Krzywański, R. Rajczyk, W. Nowak, Model research of gas emissions from lignite and biomass co-combustion in a large scale cfb boiler, Chemical and Process Engineering 35 (2) (2014) 217–231.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-da6f9180-3bd9-4f21-a095-5d270a0b6e4d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.