PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A new method for constructing Pb-210 chronology of young peat profiles sampled with low frequency

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents the results of measurements the specific concentration of lead-210 for six peat profiles representing four peat bogs from two regions of Poland and the problem of creating age-depth models. For the construction of age-depth models, it is proposed to use mathematical functions, the best fit to the measured activity. The F-statistics were used as a measure of the match quality. The obtained models are visualized in two ways – showing the age calculated on the basis of direct measurements of activity and indicating points that are the results of the used approximation. Such visualization is important to clearly distinguish the places of the age-depth model that result from the measurements of activity from those places that are the result of the approximation used. This paper proposes and tests the application of activity modelling for the cores shorter than the range of the lead method. The paper also outlines the limitations and potential dangers related to the interpretation of core dating results i) obtained by using the activity approximation resulting in the smoothing of the age-depth profile, and ii) for the cores of a length smaller than the depth of the presence of the unsupported lead. Additionally, the proposed models were compared with the models obtained by using SIT, Mod-Age, OxCal, Clam, and Bacon programs.
Wydawca
Czasopismo
Rocznik
Strony
1--14
Opis fizyczny
Bibliogr. 50 poz., rys., tab.
Twórcy
  • Silesian University of Technology, Institute of Physics – Centre for Science and Education, Konarskiego 22B, 44-100 Gliwice, Poland
Bibliografia
  • 1. Abril JM, 2015. Why would we use the Sediment Isotope Tomography (SIT) model to establish a 210Pb-based chronology in recent-sediment cores? Journal of Environmental Radioactivity 143: 40–46.
  • 2. Ali AA, Ghaleb B, Garneau M, Asnong H and Loisel J, 2008. Recent peat accumulation rates inminerotrophic peatlands of the Bay James region, Eastern Canada, inferred by 210Pb and 137Cs radiometric techniques. Applied Radiation and Isotopes 66: 1350–1358.
  • 3. Appleby PG and Oldfield F, 1978. The calculation of lead-210 dates assuming a constant rate of supply of unsupported 210Pb to the sediment. Catena 5: 1–8.
  • 4. Appleby PG, 2001. Chronostratigraphic techniques in recent sediments. In: Last WM and Smol, JP (ed.). Tracking Environmental Change Using Lake Sediments, Volume 1: Basin Analysis, Coring, and Chronological TechniquesKluwer Academic Publishers. Dordrecht, 171–203.
  • 5. Blaauw M, 2010. Methods and code for ‘classical’ age-modelling of radiocarbon sequences. Quaternary Geochronology 5: 512–518.
  • 6. Blaauw M and Christen JA, 2011. Flexible paleoclimate age-depth models using an autoregressive gamma process.Bayesian Analysis 6: 457–474.
  • 7. Bronk Ramsey C, 2008. Deposition models for chronological records. Quaternary Science Reviews 27: 42–60.
  • 8. Carroll JL and Lerche I, 2003. Sedimentary Processes: Quantification Using Radionuclides. ElsevierAmsterdam: 282pp.
  • 9. Cordoba FE, Piovano EL, Guerra L, Mulsow S, Sylvestre F and Zarate M, 2017. Independent time markers validate 210Pb chronologies for two shallow Argentine lakes in Southern Pampas. Quaternary International 438: 175–186.
  • 10. De Vleeschouwer F, Piotrowska N, Sikorski J, Pawlyta J, Cheburkin AK, Le Roux G, Lamentowicz M, Fagel N and Mauquoy D, 2009. Multiproxy evidence of `Little Ice Age' palaeoenvironmental changes in a peat bog from northern Poland. The Holocene 19: 625–637.
  • 11. De Vleeschouwer F, Sikorski J and Fagel N, 2010. Development of lead-210 measurement in peat using polonium extraction. A procedural comparison. Geochronometria 36: 1–8.
  • 12. Ebaid YY and Khater AEM, 2006. Determination of 210Pb in environmental samples. Journal of Radioanalytical and Nuclear Chemistry 270: 609–619.
  • 13. Ekonomiuk A, Rycharski M, Malawska M and Wilkomirski B, 2004. The raised bog “Bagno Bruch” – soil and habitat conditions. Proceedings of 12th International Peat Congress: Wise Use of Peatlands 853–856.
  • 14. Erlinger CH, Lettner H, Hubmer A, Hofmann W and Steinhäusler F, 2008. Determining the Chernobyl impact on sediments of a pre-Alpine lake with a very comprehensive set of data. Journal of Environmental Radioactivity 99(8): 1294–1301.
  • 15. Fiałkiewicz-Kozieł B, Smieja-Król B, Piotrowska N, Sikorski J and Gałka M, 2014. Carbon accumulation rates in two poor fens with different water regimes: Influence of anthropogenic impact and environmental change. The Holocene 24(11): 1539–1549.
  • 16. Flynn W, 1968. The determination of low-levels of polonium-210 in environmental materials. Analytica Chemica Acta 43: 221–227.
  • 17. Gąsiorowski M, 2008. Deposition rate of lake sediments under different alternative stable states. Geochronometria32: 29–35,
  • 18. Gunten L, Grosjean M, Beer J, Grob P, Morales A and Urrutia R, 2009. Age modelling of young non-varved sediments: methods and limits. Examples from two lakes in Central Chile. Journal of Paleolimnology 42: 401–412.
  • 19. Hercman H, Gąsiorowski M and Pawlak J, 2014. Testing the MOD-AGE chronologies of lake sediment sequences dated by the 210Pb method. Quaternary Geochronology 22: 155–162.
  • 20. Hercman H and Pawlak J, 2012. MOD-AGE: An age-depth model construction algorithm. Quaternary Geochronology 12: 1–10.
  • 21. ISO/IEC Guide 98-3, 2008. Uncertainty of measurement – Part 3: Guide to the expression of uncertainty in measurement. https:// www.iso.org/standard/50461.html.
  • 22. Kaszewski BM, 2002. Warunki klimatyczne Poleskiego Parku Narodowego (Climate conditions of the Poleski National Park). In: Poleski Park Narodowy. Monografia przyrodnicza(Poleski National Park. Nature monograph). Ed. Radwan S – Morpol. Lublin, 19–27 (in Polish).
  • 23. Kinder M, Tylmann W, Enters D, Piotrowska N, Poreba G and Zolitschka B, 2013. Construction and validation of calendar-year time scale for annually laminated sediments - an example from Lake Szurpily (NE Poland). GFF135(3–4): 248–257, : 10.1080/11035897.2013.785015.
  • 24. Klaminder J, Yoo K and Giesler R, 2009. Soil carbon accumulation in the dry tundra: Important role played by precipitation.Journal of Geophysical Research 114: 4005–4014.
  • 25. Krishnaswami S, Lal D, Martin JM, Meybeck M, 1971. Geochronology of lake sediments. Earth and Planetary Science Letters 11: 407–414.
  • 26. Lamentowicz M, Milecka K, Galka M, Cedro A, Pawlyta J, Piotrowska N, Lamentowicz L and van der Knaap WO, 2009. Climate- and human-induced hydrological change since AD 800 in an ombrotrophic mire in Pomerania (N Poland) tracked by testate amoebae, macro-fossils, pollen, and tree-rings of pine. Boreas 38: 214–229.
  • 27. Le Roux G, Aubert D, Stille P, Krachler M, Kober B, Cheburkin A, Bonani G and Shotyk W, 2005. Recent atmospheric Pb depositionat a rural site in southern Germany assessed using a peat core and snowpack, and comparison with other archives. Atmospheric Environment.39(36): 6790–6801.
  • 28. Le Roux G and Marshall WA, 2010. Constructing recent peat accumulation chronologies using atmospheric fall-out radionuclides. Mires and Peat 7: 1–14.
  • 29. Liu J, Carroll JL and Lerche I, 1991. A technique for disentangling temporal source and sediment variations from radioactive isotope measurements with depth. Nuclear Geophysics 5: 31–45.
  • 30. Luque JA and Julià R, 2002. Lake sediment response to land-use and climate change during the last 1000 years in the oligotrophic Lake Sanabria (northwest of Iberian Peninsula). Sedimentary Geology 148(1–2): 343–355.
  • 31. Mieczan T, 2007. Epiphytic protozoa (testate amoebae and ciliates) Associated with sphagnumin peatbogs: Relationship to chemical parameters. Polish Journal of Ecology 55: 79–90.
  • 32. Mizugaki S, Nakamura F and Araya T, 2006. Using dendrogeomorphology and 137Cs and 210Pb radiochronology to estimate recent changes in sedimentation rates in Kushiro Mire, Northern Japan, resulting from land use change and river channelization. Catena 68(1): 25–40.
  • 33. Novak M, Erel Y, Zemanova L, Bottrell SH and Adamova M, 2008. A comparison of lead pollution record in Sphagnum peat with known historical Pb emission rates in the British Isles and the Czech Republic. Atmospheric Environment 42: 8997–9006.
  • 34. Olid C, Garcia-Orellana J, Martinez-Cortizas A, Masque P, Peiteado E and Sanchez-Cabeza JA, 2008. Role of surface vegetation in 210Pbdating of peat cores. Environmental Science and Technology 42: 8858–8864.
  • 35. Ośródka L, Krajny E and Wojtylak M, 2011. Charakterystyka warunków meteorologicznych województwa śląskiego w 2010 roku na tle wielolecia. (Characteristics of meteorological conditions of the Śląskie Voivodship in 2010 on the background of many years). In: Szczygieł A, (ed.) Stan środowiska w województwie śląskim w 2010 roku (The state of the environment in the Śląskie Voivodeship in 2010). Katowice, 61–65 (in Polish).
  • 36. Putyrskaya V, Klemt E, Rollin S, Astner M, Sahli H, 2015. Dating of sediments from four Swiss prealpine lakes with 210Pb determined by gamma-spectrometry: progress and problems. Journal of Environmental Radioactivity 145: 78–94.
  • 37. Robbins JA, 1978. Geochemical and geophysical applications of radioactive lead. In: Nriagu, JO (ed.) Biogeochemistry of Lead in the Environment Elsevier Scientific. Amsterdam, 285–393.
  • 38. Sanchez-Cabeza JA, Ruiz-Fernandez AC, Ontiveros-Cuadras JF, Perez-Bernal LH and Olid C, 2014. Monte Carlo uncertainty calculation of 210Pb chronologies and accumulation rates of sediments and peat bogs. Quaternary Geochronology 23: 80–93.
  • 39. Sikorski J, 2003. Rekonstrukcja historii depozycji osadów w zbiorniku wodnym Kozłowa Góra na podstawie pomiarów izotopu ołowiu 210Pb(Reconstruction of the deposition sediments history in the water reservoir Kozłowa Góra on the base of isotopes 210Pb measurements). PhD thesis, Silesian University of Technology Gliwice: 130pp.
  • 40. Sikorski J and Bluszcz A, 2003. Testing applicability of 210Pb method to date sediment of human–made lake Kozłowa Góra. Geochronometria 22: 63–66.
  • 41. Sikorski J and Bluszcz A, 2008. Application of α and γ spectrometry in the 210Pb method to model sedimentation in artificial retention reservoir. Geochronometria 31: 65–75.
  • 42. Sikorski J and Goslar T, 2003. Inventory of sediments of the dammed lake in Kozłowa Góra and first measurements of 210Pb activities in the lake deposits. Geochronometria 22: 55–62.
  • 43. Sugier P, 2014. Ecological Processes and Properties of Excavated Peatlands of Eastern Poland Habilitation thesis, Maria Curie-Skłodowska University Lublin: 170pp.
  • 44. Śmieja-Król B, Fiałkiewicz-Kozieł B, Sikorski J and Palowski B, 2010. Heavy metal behaviour in peat - A mineralogical perspective. Science of the Total Environment 408(23): 5924–5931.
  • 45. MR, Manning SW and Wieder R, 2004. Dating recent peat deposits. Wetlands 24: 324–356.
  • 46. Tylmann W, Enters D, Kinder M, Moska P, Ohlendorf C, Poręba G and Zolitschka B, 2013. Multiple dating of varved sediments from Lake Łazduny, northern Poland: Toward an improved chronology for the last 150 years. Quaternary Geochronology 15: 98–107.
  • 47. Tylmann W, Fischer HW, Enters D, Kinder M, Moska P, Ohlendorf C, Poręba G and Zolitschka B, 2014. Reply to the comment by F. Gharbi on “Multiple dating of varved sediments from Lake Łazduny, northern Poland: Toward an improved chronology for the last 150 years”. Quaternary Geochronology20: 111–113,
  • 48. Tylmann W, Bonk A, Goslar T, Wulf S and Martin Grosjean M, 2016. Calibrating 210Pb dating results with varve chronology and independent chronostratigraphic markers: Problems and implications. Quaternary Geochronology32: 1–10,
  • 49. Xiang L, Lu XX, Higgitt DL and Wang SM, 2002. Recent lake sedimentation in the middle and lower Yangtze basin inferred from 137Cs and 210Pb measurements. Journal of Asian Earth Sciences21(1): 77–86,
  • 50. Zaborska A, Carroll J, Papucci C and Pempkowiak J, 2007. Intercomparison of alpha and gamma spectrometry techniques used in 210Pb geochronology. Journal of Environmental Radioactivity93(1): 38–50,
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-da6d5232-001d-4e39-bd9e-76e817c31401
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.