PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experimental Studies on the Dielectric Behaviour of Polyester Woven Fabrics

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Eksperymentalne badanie właściwości dielektrycznych tkanin poliestrowych
Języki publikacji
EN
Abstrakty
EN
In this paper, the influence of fabric structure, weft density, end spacing and yarn fineness on the dielectric constant of polyester woven fabrics was studied. The results show that at low frequencies, the dielectric constant of fabric was clearly affected by the processing parameters; when the organisation of the fabric is plain i.e. the warp density is 140/10 cm, weft density 140/10 cm and yarn linear density 32 tex, the absorbing performance of polyester woven fabrics is at its best. At higher frequencies, the effect of the varying parameters on the dielectric constant of the fabrics can be neglected. Polyester woven fabrics have better EM absorbing properties for these parameters. This study offers a new theoretical basis for the development of EM absorptive fabrics.
PL
Badano wpływ struktury tkaniny (gęstości wątku i osnowy oraz masy liniowej przędzy) na dielektryczną stałą poliestrowych tkanin. Wyniki wykazują, że przy niskich częstotliwościach stałe dielektryczne w wyraźny sposób zależą od parametrów procesu tkania. Natomiast przy wyższych częstotliwościach wpływ struktury jest znacznie mniejszy, a nawet może być pomijany. Stwierdzono, że tkaniny poliestrowe mają dobre właściwości absorpcyjne pola elektromagnetycznego. Badania stwarzają nowe podstawy teoretyczne dla opracowywania tkanin absorbujących pole elektromagnetyczne.
Rocznik
Strony
67--71
Opis fizyczny
Bibliogr. 26 poz., rys., tab.
Twórcy
autor
  • School of Textiles, Tianjin Polytechnic University, Tianjin, P. R. China
autor
  • School of Textiles, Tianjin Polytechnic University, Tianjin, P. R. China
  • Key Laboratory of Advanced Textile Composite Materials, Ministry of Education of China, Tianjin, P. R. China
Bibliografia
  • 1. Yang YL, Gupta MC, Dudley KL, Lawrence RW. Novel Carbon Nanotube–Polystyrene Foam Composites for Electromagnetic Interference Shielding. Nano Letters 2005; 5(11): 2131–2134.
  • 2. Shen JH, Chen KY, Li LC, Wang WX, Jin Y. Fabrication and Microwave Absorbing Properties of (Z-Type Barium Ferrite/Silica)@Polypyrrole Composites. Journal of Alloys and Compounds 2014; 615: 488-495.
  • 3. Gong XH, Paige DA, Siegler MA, Jin YQ. Inversion of Dielectric Properties of the Lunar Regolith Media with Temperature Profiles Using Change Microwave Radiometer Observations. IEEE Geoscience and Remote Sensing Letters 2015; 12(2): 384-388.
  • 4. Hashisho Z, Rood MJ, Barot S, Bernhard J. Role Of Functional Groups on The Microwave Attenuation and Electric Resistivity of Activated Carbon Fiber Cloth. Carbon 2009; 47(7): 1814–1823.
  • 5. Folgueras LDC, Nohara EL, Faez R, Rezende MC. Dielectric Microwave Absorbing Material Processed by Impregnation of Carbon Fiber Fabric with Polyaniline. Materials Research 2007; 10(1): 95–99.
  • 6. Lee SE, Park KY, Oh KS, Kim CG. The Use of Carbon/Dielectric Fiber Woven Fabrics As Filters for Electromagnetic Radiation. Carbon 2009; 47(8): 1896–1904.
  • 7. Park KY, Lee SE, Kim CG, Han JH. Application of MWNT-Added Glass Fabric/Epoxy Composites to Electromagnetic Wave Shielding Enclosures. Composite Structures 2007; 81 (3): 401–406.
  • 8. Hausman S, Januszkiewicz L, Michalak M, Kacprzak T, Krucinska I. High Frequency Dielectric Permittivity of Nonwovens. Fibres and Textiles in Eastern Europe 2006; 14(5): 60-63.
  • 9. Redlich G, Obersztyn E, Olejnik M, Fortuniak K, Bartczak A, Szugajew L, Jarzemski J. New Textiles Designed for Anti-Radar Camouflage. Fibres and Textiles in Eastern Europe 2014; 22(1): 34-42.
  • 10. Burgnies L, Lheurette E, Lippens D. Textile Inspired Flexible Metamaterial With Negative Refractive Index. Journal of Applied Physics 2015; 117(14).
  • 11. Alsaleh MH, Sundararaj U. Electromagnetic Interference Shielding Mechanisms of CNT/Polymer Composites. Carbon 2009; 47(7): 1738–1746.
  • 12. Shuilin T, Lee FC, Mattavelli P, Yan YY. Small-Signal Analysis and Optimal Design of Constant Frequency V2 Control. IEEE Transactions on Power Electronics 2015; 30(3): 1724-1733.
  • 13. Im JS, Kim JG, Lee SH, Lee YS. Effective Electromagnetic Interference Shielding by Electrospun Carbon Fibers Involving Fe2O3/BaTiO3/MWCNT Additives. Materials Chemistry and Physics 2010; 124(1): 434–438.
  • 14. Aksit AC, Onar N, Ebeoglugil MF, Birlik I, Celik E, Ozdemir I. Electromagnetic and Electrical Properties of Coated Cotton Fabric With Barium Ferrite Doped Polyaniline Film. Journal of Applied Polymer Science 2009; 113(1): 358–366.
  • 15. Cetiner S. Dielectric and Morphological Studies of Nanostructured Polypyrrole-Coated Cotton Fabrics. Textile Research Journal 2014; 84(14):1463-1475.
  • 16. Liu YJ, Zhao XM. The Research on the Dielectric Constant of Polyester Knitted Fabrics. Advanced Material Research 2015; 1089: 42-45.
  • 17. Wu KH, Ting TH, Wang GP, Ho WD, Shih CC. Effect of Carbon Black Content on Electrical and Microwave Absorbing Properties of Polyaniline/Carbon Black Nanocomposites. Polymer Degradation and Stability 2008; 93(2): 483–488.
  • 18. Zhang XZ, Sun W. Microwave Absorbing Properties of Double-Layer Cementitious Composites Containing Mn–Zn Ferrite. Cement and Concrete Composites 2010; 32(9): 726–730.
  • 19. Chen MX, Zhu Y, Pan YB, Kou HM, Xu H, Guo JK. Gradient Multilayer Structural Design of Cnts/Sio2 Composites for Improving Microwave Absorbing Properties. Materials and Design 2011; 32(5): 3013–3016.
  • 20. Feng YB, Qiu T, Shen CY. Absorbing Properties And Structural Design of Microwave Absorbers Based on Carbonyl Iron and Barium Ferrite. Journal of Magnetism and Magnetic Materials 2007; 318(1–2): 8–13.
  • 21. Hwang Y. Microwave Absorbing Properties of NiZn-Ferrite Synthesized from Waste Iron Oxide Catalyst. Materials Letters 2006; 60(27): 3277–3280.
  • 22. Liao ZQ, Nie Y, Ren WY, Wang X, Gong RZ. Effect of FeCoB-SiO2-Film-Based Fractal Frequency Selective Surface on the Absorption Properties of Microwave Absorbers. IEEE Magnetics Letters 2010; 48(14): 4074–4080.
  • 23. Liu XX, Zhang ZY, Wu YP. Absorption Properties of Carbon Black/Silicon Carbide Microwave Absorbers. Composites Part B: Engineering 2011; 42(2): 326–329.
  • 24. Qing YC, Zhou WC, Luo F, Zhu DM. Epoxy-silicone Filled With Multi-Walled Carbon Nanotubes and Carbonyl Iron Particles as A Microwave Absorber. Carbon 2010; 48(14): 4074–4080.
  • 25. Wu KH, Ting TH, Liu CI, Yang CC, Hsu JS. Electromagnetic and Microwave Absorbing Properties of Ni0.5Zn0.5Fe2O4/Bamboo Charcoal Core-Shell Nanocomposites. Composites Science and Technology 2008; 68(1): 132–139.
  • 26. Rosenkranz PW. A Model for the Complex Dielectric Constant of Supercooled Liquid Water at Microwave Frequencies. IEEE Transactions on Geoscience and Remote Sensing 2015; 53(3): 1387-1393.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-da6a55f5-2c50-4710-9af9-d01494fd0b9a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.