PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Using of Golden Code Orthogonal Super-Symbol in Media-Based Modulation for Single-Input Multiple-Output Schemes

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The media-based modulation (MBM) scheme is capable of providing high throughput, increasing spectrum efficiency, and enhancing bit error rate (BER) performance of communication systems. In this paper, an MBM employing radio frequency (RF) mirrors and golden code is investigated in a single-input multiple-output (GC-SIMO) application. The aim is to reduce complexity of the system, maximize linear relationships between RF mirrors and improve spectral efficiency of MBM to in order to obtain a high data rate with the use of less hardware. Orthogonal pairs of the super-symbol in the GC scheme’s encoder are employed, transmitted via different RF mirrors at different time slots in order to achieve the full data rate and high diversity. In the results having BER of 10−5 , the GC-SIMO, MBM exhibits better performance than GD-SIMO, with the gain of approximately 7 dB and 6.5 dB SNR for 4 b/s/Hz and 6 b/s/Hz, respectively. The derived theoretical average error probability of the proposed scheme is validated with the use of the Monte Carlo simulation.
Słowa kluczowe
Rocznik
Tom
Strony
43--48
Opis fizyczny
Bibliogr. 42 poz., rys.
Twórcy
  • Department of Electrical, Electronic and Computer Engineering, University of Kwazulu-Natal, Durban, South Africa
autor
  • Department of Electrical, Electronic and Computer Engineering, University of Kwazulu-Natal, Durban, South Africa
Bibliografia
  • [1] A. Goldsmith, Wireless Communications, 1st ed. New York: Cambridge University Press, 2005 (ISBN: 9780511841224).
  • [2] S. Patel, T. Quazi, and H. Xu, „High-rate uncoded space-time labelling diversity with low-complexity detection", Int. J. of Commun. Syst., vol. 33, no. 14, e4520, 2020 (DOI: 10.1002/dac.4520).
  • [3] T. Quazi and H. Xu, „SSD enhanced uncoded space-time labeling diversity", Int. J. of Commun. Syst., vol. 31, no. 11, e3592, 2018 (DOI: doi.org/10.1002/dac.3592).
  • [4] A. Evans, T. Quazi, and H. Xu, „BER performance of a maximum ratio transmission enhanced hierarchical quadrature amplitude modulation (MRT-HQAM) system over Rayleigh fading channels", IET Commun., vol. 10, no. 17, pp. 2473-2479, 2016 (DOI: 10.1049/iet-com.2016.0676).
  • [5] T. Quazi and H. Xu, „Simple UEP mechanism for multimedia traffic using the Alamouti structure with hierarchical modulation and Signac space diversity", IET Commun., vol. 8, no. 17, pp. 3128-3135, 2014 (DOI: 10.1049/iet-com.2014.0350).
  • [6] S. Solwa, M. K. Elmezughi, A. J. Bamisaye, D. Ayanda, A. Almaktoof, and M. T. E. Kahn, „Genetic algorithm-based uncoded M-arphase shift keying space-time labelling diversity with three transmiantennas for future wireless networks", in Proc. of the 9th Int. Confon Elec. and Electron. Engin. ICEEE 2022, Alanya, Turkey, 2022, pp. 423-428 (DOI:10.1109/ICEEE55327.2022.9772544).
  • [7] N. R. Naidoo, H. Xu, and T. Quazi, „Spatial modulation: optima detector asymptotic performance and multiple-stage detection", IET Commun., vol. 5, pp. 1368-1376, 2019 (DOI: 10.1049/iet-com.2010.0667).
  • [8] R. Y. Mesleh, H. Haas, S. Sinanovic, C. W. Ahn, and S. Yun, „Spatial modulation", IEEE Trans. on Veh. Technol., vol. 57, no. 4, pp. 2228-2241, 2008 (DOI: 10.1109/TVT.2007.912136).
  • [9] Z. Pan, J. Luo, J. Lei, L. Wen, and C. Tang, „Uplink spatial modulation SCMA system", IEEE Commun. Lett., vol. 23, no. 1, pp. 184-187, 2019 (DOI: 10.1109/LCOMM.2018.2882813).
  • [10] C. Zhong, X. Hu, X. Chen, D. W. K. Ng, and Z. Zhang, „Spatial modulation assisted multi-antenna non-orthogonal multiple access", IEEE Wirel. Commun., vol. 25, no. 2, pp. 61-67, 2018 (DOI: 10.1109/MWC.2018.1700062).
  • [11] A. Khalid, T. Quazi, H. Xu, and S. Patel, „Performance analysis of M-APSK generalised spatial modulation with constellation reassignment", Int. J. of Commun. Syst., vol. 33, no. 14, e4497, 2020 (DOI: 10.1002/dac.4497).
  • [12] A. Bhowal, R. Lalani, A. S. Sapre, and R. S. Kshetrimayum, „Advanced spatial modulation for efficient MIMO-based B2B communications in sporting activities", IET Commun., vol. 13, no. 20, pp. 3529-3536, 2019 (DOI: 10.1049/iet-com.2019.0747).
  • [13] A. Bhowal and R. S. Kshetrimayum, „Advanced optical spatial modulation techniques for FSO communication", IEEE Trans. on Commun., vol. 69, no. 2, pp. 1163-1174, 2021 (DOI: 10.1109/TCOMM.2020.3035400).
  • [14] T. Liu, „Analysis of the Alamouti STBC MIMO system with spatial division multiplexing over the Rayleigh fading channel", IEEE Trans. on Wirel. Commun., vol. 14, no. 9, pp. 5156-5170, 2015 (DOI: 10.1109/TWC.2015.2433924).
  • [15] E. Basar, U. Aygolu, E. Panayirci, and H. V. Poor, „Space-time Block coded spatial modulation", IEEE Trans. on Wirel. Commun., vol. 59, pp. 823-832, 2011 (DOI: 10.1109/TCOMM.2011.121410.100149).
  • [16] A. Saeed, H. Xu, and T. Quazi, „Alamouti space-time block coded hierarchical modulation with signal space diversity and MRC reception in Nakagami-m fading channel", IET Commun., vol. 8, no. 4, pp. 516-524, 2014 (DOI: 10.1049/iet-com.2013.0519).
  • [17] J. Boutros and E. Viterbo, „Signal space diversity: a power- and bandwidth-efficient diversity technique for the Rayleigh fading channel", IEEE Trans. on Inform. Theory, vol. 44, no. 4, pp. 1453-1467, 1998 (DOI: 10.1109/18.681321).
  • [18] A. Saeed, T. Quazi, and H. Xu, „Hierarchical modulated QAM with signal space diversity and MRC reception in Nakagami-m fading channels", IET Commun., vol. 7, no. 12, pp. 1296-1303, 2013 (DOI:10.1049/iet-com.2012.0750).
  • [19] A. K. Khandani, „Media-based modulation: Converting static Rayleigh fading to AWGN", in Proc. IEEE Int. Symp. on Inform. Theory, Honolulu, HI, USA, 2014, pp. 1549-1553 (DOI: 10.1109/ISIT.2014.6875093).
  • [20] T. Mao, Q. Wang, Z. Wang, and S. Chen, „Novel index modulation techniques: A survey", IEEE Commun. Surv. and Tutor., vol. 21, no. 1, pp. 315-348, 2019 (DOI: 10.1109/COMST.2018.2858567).
  • [21] Y. Naresh and A. Chockalingam, „On media-based modulation using RF mirrors", IEEE Trans. on Veh. Technol., vol. 66, no. 6, pp. 4967-4983, 2017 (DOI: 10.1109/TVT.2016.2620989).
  • [22] E. Seifi, M. Atamanesh, and A. K. Khandani, „Media-based MIMO: Outperforming known limits in wireless", in Proc. IEEE Int. Conf. on Commun. ICC 2016, Kuala Lumpur, Malaysia, 2016 (DOI: 10.1109/ICC.2016.7511273).
  • [23] E. Seifi, M. Atamanesh, and A. K Khandani, „Performance evaluation of media-based modulation in comparison with spatial modulation and legacy SISO/MIMO", in Proc. 28th Biennial Symp. On Commun. BSC 2016, Kelowna, British Columbia, 2016 [Online]. Available: http://cst.uwaterloo.ca/content/bsc-2016.pdf
  • [24] Y. Naresh and A. Chockalingam, „On media-based modulation using RF mirrors", IEEE Trans. Veh. Technol., vol. 66, no. 6, pp. 4967-4983, 2017 (DOI: 10.1109/TVT.2016.2620989).
  • [25] Y. Naresh and A. Chockalingam, „A low-complexity maximum like-lihood detector for differential media-based modulation", IEEE Commun. Lett., vol. 21, no. 10, pp. 2158-2161, 2017 (DOI: 10.1109/LCOMM.2017.2687921).
  • [26] E. Basar, „Index modulation techniques for 5G wireless networks", IEEE Commun. Mag., vol. 54, no. 7, pp. 168-175, 2016 (DOI: 10.1109/MCOM.2016.7509396).
  • [27] M. Wen, E. Basar, Q. Li, B. Zheng, and M. Zhang, „Multiple-mode orthogonal frequency division multiplexing with index modulation", IEEE Trans. Commun., vol. 65, no. 9, pp. 3892-3906, 2017 (DOI: 10.1109/TCOMM.2017.2710312).
  • [28] M. D. Renzo, H. Haas, and P. M. Grant, „Spatial modulation for multiple antenna wireless systems: A survey", IEEE Commun. Mag., vol. 49, no. 12, pp. 182-191, 2011 (DOI: 10.1109/MCOM.2011.6094024).
  • [29] M. Nakao, T. Ishihara, and S. Sugiura, „Single-carrier frequency-domain equalization with index modulation", IEEE Commun. Lett., vol. 21, no. 2, pp. 298-301, 2017 (DOI: 10.1109/LCOMM.2016.2626447).
  • [30] M. Nakao, T. Ishihara, and S. Sugiura, „Dual-mode time-domain index modulation for Nyquist-criterion and faster-than-Nyquist single-carrier transmissions", IEEE Access, vol. 5, pp. 27659-27667, 2017 (DOI: 10.1109/ACCESS.2017.2768539).
  • [31] Y. Naresh and A. Chockalingam, „Performance analysis of media-based modulation with imperfect channel state information", IEEE Trans. on Veh. Technol., vol. 67, no. 5, pp. 4192-4207, 2018 (DOI: 10.1109/TVT.2018.2791845).
  • [32] N. Pillay and H. Xu, „Quadrature spatial media-based modulation with RF mirrors", IET Commun., vol. 11, pp. 2440-2448, 2017 (DOI: 10.1049/iet-com.2017.0269).
  • [33] R. Pillay, N. Pillay, and H. Xu, „A study of single-input multiple-output media-based modulation with RF mirrors", in Proc. of the Southern Africa Telecommun. Netw. and Appl. Conf. SATNAC 2017, Barcelona, Spain, 2017, pp. 20-25, 2017 [Online]. Available: https://www.satnac.org.za/assets/documents/proceedings/SATNAC 2017 Proceedings.pdf
  • [34] T. Mao, Q. Wang, M. Wen and Z. Wang, „Secure single-input-multiple-output media-based modulation", IEEE Trans. on Veh. Technol., vol. 69, no. 4, pp. 4105-4117, 2020 (DOI: 10.1109/TVT.2020.2975303).
  • [35] A. J. Bamisaye and T. Quazi, „Two-way decode and forward quadrature media-based modulation for single-input multiple-output scheme", Int. J. of Commun. Sys., e5186, 2022 (DOI: 10.1002/dac.5186).
  • [36] A. J. Bamisaye and T. Quazi, „Quadrature spatial modulation-aided single-input multiple output-media-based modulation", Int. J. of Commun. Syst., vol. 34, no. 11, e4883, 2021 (DOI: 10.1002/dac.4883).
  • [37] H. Xu and N. Pillay, „Golden codeword based modulation schemes for single-input multiple-output systems", Int. J. of Commun. Syst., e3963, 2019 (DOI: 10.1002/dac.3963).
  • [38] L. Luzzi, G. R. Othman, J. Belffore, and E. Viterbo, „Golden space-time block-coded modulation", IEEE Trans. on Inform. Theory, 2021, vol. 55, no. 2, pp. 584-597, 2009 (DOI: 10.1109/TIT.2008.2009846).
  • [39] J. Belffore, G. Rekaya, and E. Viterbo, „The golden code: A 2£2 full-rate space-time code with non-vanishing determinants", in Proc. of Int. Symp. on Inform. Theory ISIT 2004, Chicago, IL, USA, 2004 (DOI: 10.1109/ISIT.2004.1365347).
  • [40] H. Xu and N. Pillay, „The component-interleaved golden code and its low-complexity detection", IEEE Access, vol. 8, pp. 59550-59558, 2020 (DOI: 10.1109/ACCESS.2020.2982673).
  • [41] H. Xu and N. Pillay, „Multiple complex symbol golden code", IEEE Access, vol. 8, pp. 103576-103584, 2020 (DOI: 10.1109/ACCESS.2020.2997308).
  • [42] N. Pillay and H. Xu, „RF mirror media-based modulation for golden codes", J. of Telecommun. Electron. and Comp. Engin., vol. 10,2021, no. 3, pp. 21-24, 2018 [Online]. Available: https://jtec.utem.edu.my/jtec/article/view/3376/3419
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-da63431a-5b3b-48b0-9135-d419dded3fcd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.