PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Speculation on the resilience of karst aquifers using geophysical and GIS based approaches (a case study of Iran)

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Employing the "resilience" term to groundwater is a formidable challenge. The situation is even more intricate for the karst aquifers which may act as surface water with low resilience, alluvial groundwater with high resilience, and a combination of both. The objective of this study is to assess the groundwater resilience and hydrogeophysical characteristics of Asmari and Ilam-Sarvak formations at Susan karst, south-west Iran. Hence, 260 vertical electrical soundings (VESs) were carried out with the Schlumberger array. The VES curves were interpreted, scored, and interpolated to produce a groundwater potential map. Moreover, a geographic information system (GIS)-based approach was employed, including six layers, i.e. distance to springs, elevation difference from springs, slope, lithology, fracture density, and fracture length density. The GIS criterial maps were generated, reclassified, weighted, and overlaid, such that a supplementary groundwater potential map was produced. The electrical resistivity values and degrees of smoothness of the VES curves depicted considerable groundwater potential for the Asmari formation. However, the groundwater potential of the Ilam-Sarvak formation may be attributed to the superficial fractured zones. On the other hand, the geospatial technology which is based on the surface indices represented enormous groundwater potential for both formations, especially for the Ilam-Sarvak formation. Finally, regarding the groundwater resilience, various hydrological characteristics occur for two karst formations in a small-scale region. The Ilam-Sarvak formation primarily behaves like the surface water with low resilience (conduit flow, low storage), and the Asmari formation portrays the features of the alluvial aquifers with high resilience (diffuse flow, large storage).
Czasopismo
Rocznik
Strony
2393--2415
Opis fizyczny
Bibliogr. 88 poz.
Twórcy
  • Faculty of Earth Sciences, Shahid Beheshti University, Tehran, Iran
  • Faculty of Earth Sciences, Shahid Beheshti University, Tehran, Iran
  • Faculty of Earth Sciences, Shahid Beheshti University, Tehran, Iran
Bibliografia
  • 1. Adji TN, Sejati SP (2014) Identification of groundwater potential zones within an area with various geomorphological units by using several field parameters and a GIS approach in Kulon Progo Regency, Java. Indonesia Arab J Geosci 7(1):161–172
  • 2. Ahmad I, Dar MA, Andualem TG, Teka AH (2020) Groundwater development using geographic information system. Appl Geomat 12(1):73–82
  • 3. Alijani F (2011) Comparison of karstification in Asmari and Ilam-Sarvak formations with emphasizing on the geoelectrical tomography (a case study of Izeh). Dissertation, Shahid Beheshti University [In Persian]
  • 4. Alraggad M, Johnsen-Harris B, Shdaifat A, Abugazleh MK, Hamaideh A (2017) Groundwater resilience to climate change in the eastern Dead Sea basin- Jordan. Sci Res Essays 12(3):24–41
  • 5. Aminiyan MM, Aminiyan FM, Heydariyan A (2016) Study on hydrochemical characterization and annual changes of surface water quality for agricultural and drinking purposes in semi-arid area. Sustain Water Resour Manag 2(4):473–487
  • 6. Andualem TG, Demeke GG (2019) Groundwater potential assessment using GIS and remote sensing: a case study of Guna tana landscape, upper Blue Nile Basin, Ethiopia. J Hydrol Reg Stud 24:100610
  • 7. Arkoprovo B, Adarsa J, Prakash SS (2012) Delineation of groundwater potential zones using satellite remote sensing and geographic information system techniques: a case study from Ganjam district, Orissa. India Res J Recent Sci 1(9):59–66
  • 8. Arya S, Subramani T, Karunanidhi D (2020) Delineation of groundwater potential zones and recommendation of artificial recharge structures for augmentation of groundwater resources in Vattamalaikarai Basin, South India. Environ Earth Sci 79(5):1–13
  • 9. Ashjari J, Raeisi E (2006) Influences of anticlinal structure on regional flow, Zagros. Iran J Cave Karst Stud 68(3):118–129
  • 10. Barmaki MD, Rezaei M, Raeisi E, Ashjari J (2019) Comparison of surface and interior karst development in Zagros karst aquifers, southwest Iran. J Cave Karst Stud 81(2):84–97
  • 11. Bathrellos GD, Gaki-Papanastassiou K, Skilodimou HD, Papanastassiou D, Chousianitis KG (2012) Potential suitability for urban planning and industry development using natural hazard maps and geological-geomorphological parameters. Environ Earth Sci 66:537–548
  • 12. Bathrellos GD, Skilodimou HD, Chousianitis K, Youssef AM, Pradhan B (2017) Suitability estimation for urban development using multi-hazard assessment map. Sci Total Environ 575:119–134
  • 13. Bernard J (2003) Short note on the depth of investigation of electrical methods. Iris-Instruments. https://www.iris-instruments.com. Accessed 16 September 2019
  • 14. Bobatchev A, Modin I, Shevnin V (2001) IPI2WIN V. 2 for VES data interpretation. Moscow State University, Russia
  • 15. Bögli A (1980) Karst hydrology and physical speleology. Springer-Verlag, Berlin
  • 16. Bonham-Carter GF (1994) Geographic information systems for geoscientists: modelling with GIS. Pergamon, Oxford
  • 17. Butler JJ (2005) Hydrogeological methods for estimation of spatial variations in hydraulic conductivity. In: Rubin Y, Hubbard SS (eds) Hydrogeophysics. Springer, the Netherlands
  • 18. Chakravarthi V, Shankar GBK, Muralidharan D, Harinarayana T, Sundararajan N (2007) An integrated geophysical approach for imaging sub-basalt sedimentary basins: case study of Jam River Basin. India Geophysics 72(6):141–147
  • 19. Chen J, Hubbard SS, Rubin Y (2001) Estimating the hydraulic conductivity at the South Oyster Site from geophysical tomographic data using Bayesian techniques based on the normal linear regression model. Water Resour Res 37(6):1603–1613
  • 20. Chinnasamy P, Maheshwari B, Prathapar SA (2018) Adaptation of standardised precipitation index for understanding water table fluctuations and groundwater resilience in hard-rock areas of India. Environ Earth Sci 77(15):1–16
  • 21. Cowen D (1988) GIS versus CAD versus DBMS: What are the differences? Photogramm Eng Rem S 54(11):1551–1555
  • 22. Das B, Pal SC, Malik S, Chakrabortty R (2019) Modeling groundwater potential zones of Puruliya district, West Bengal, India using remote sensing and GIS techniques. Geol Ecol Landsc 3(3):223–237
  • 23. deGroot-Hedlin C, Constable S (1990) Occam’s inversion to generate smooth, two-dimensional models form magnetotelluric data. Geophysics 55:1613–1624
  • 24. Drew D, Hötzl H (1999) Karst hydrogeology and human activities: impacts, consequences and implications. Routledge Publishing, Rotterdam
  • 25. El Osta MM, El Sheikh AE, Barseem MS (2010) Comparative hydrological and geoelectrical study on the Quaternary Aquifer in the Deltas of Wadi Badaa and Ghweiba, El Ain El Sukhna Area, Northwest Suez Gulf. Egypt Int J Geophys 10:1–13
  • 26. Ezzedine S, Rubin Y, Chen J (1999) Bayesian method for hydrogeological site characterization using borehole and geophysical survey data: theory and application to the Lawrence Livermore National Laboratory Superfund site. Water Resour Res 35(9):2671–2683
  • 27. Ford D, Williams P (1989) Karst geomorphology and hydrology. Springer, the Netherlands
  • 28. Ford D, Williams P (2007) Karst hydrogeology and geomorphology. John Wiley and Sons, England
  • 29. Goldscheider N (2005) Fold structure and underground drainage pattern in the Alpine karst system Hochifen-Gottesacker. Eclogae Geol Helv 98(1):1–17
  • 30. Goldscheider N, Drew D (2007) Methods in karst hydrogeology. Taylor and Francis Group, London
  • 31. Griffiths DH, Barker RD (1993) Two-dimensional resistivity imaging and modelling in areas of complex geology. J Appl Geophys 29:211–226
  • 32. Grönwall J, Oduro-Kwarteng S (2018) Groundwater as a strategic resource for improved resilience: a case study from peri-urban Accra. Environ Earth Sci 77(1):1–6
  • 33. Hafeez THA, Sabet HS, El-Sayed AN, Zayed MA (2018) Geoelectrical exploration of groundwater at West Dayrout Area, Assiut Governorate. Egypt J Astron Gephys 7:279–296
  • 34. Hema CN, Padmalal D, Ammini J, Vinod PG (2017) Delineation of groundwater potential zones in river basins using geospatial tools—an example from Southern Western Ghats, Kerala. India J Geovis Spat Anal 1:5
  • 35. Herold T, Jordan P, Zwahlen F (2000) The influence of tectonic structures on karst flow patterns in karstified limestones and aquitards in the Jura Mountains, Switzerland. Eclogae Geol Helv 93:349–362
  • 36. Hubbard SS, Rubin Y (2005) Introduction to hydrogeophysics. Springer, Netherlands
  • 37. Hubbard SS, Rubin Y, Ernie M (1999) Spatial correlation structure estimation using geophysical and hydrogeological data. Water Resour Res 35(6):1809–1825
  • 38. Hussein A, Govindu V, Nigusse AGM (2016) Evaluation of groundwater potential using geospatial techniques. Appl Water Sci 7(5):2447–2461
  • 39. Ibrahim-Bathis K, Ahmed SA (2016) Geospatial technology for delineating groundwater potential zones in Doddahalla watershed of Chitradurga district, India. Egypt J Remote Sens Space Sci 19(2):223–234
  • 40. IOCC (1966) Geological compilation map 1:100,000 of Kuh-E Asmari and Kamestan. Iranian Oil Operating Companies, Iran
  • 41. Karunanidhi D, Vennila G, Suresh M, Karthikeyan P (2014) Geoelectrical Schlumberger investigation for characterizing the hydrogeological conditions using GIS in Omalur Taluk, Salem District, Tamil Nadu, India. Arab J Geosci 7:1791–1798
  • 42. Kirsch R (2006) Groundwater geophysics. Springer-Verlag, Berlin Heidelberg
  • 43. Kooefoed O (1960) A generalized Cagniard graph for interpretation of geoelectric sounding data. Geophys Propect 8:459–469
  • 44. Kumar P, Herath S, Avtar R, Takeuchi K (2016) Mapping of groundwater potential zones in Killinochi area, Sri Lanka, using GIS and remote sensing techniques. Sustain Water Resour Manag 2(4):419–430
  • 45. Loke MH, Barker RD (1996) Rapid least-squares inversion of apparent resistivity pseudo-sections using a quasi-Newton method. Geophys Prospect 44:131–152
  • 46. Mabee SB, Hardcastle KC, Wise DW (1994) A method for collecting and analyzing lineaments for regional-scale fractured bedrock aquifer studies. Groundwater 32(6):884–894
  • 47. MacDonald AM, Bonsor HC, Calow RC et al (2011) Groundwater resilience to climate change in Africa. British Geological Survey, Nottinghamshire
  • 48. MacDonald AM, Bonsor HC, Taylor RG, Shamsudduha M, Burgess WG, Ahmed KM, Mukherjee A, Zahid A, Lapworth D, Krishan G, Rao MS (2015) Groundwater resources in the Indo‐Gangetic basin: resilience to climate change and abstraction. British Geological Survey, Nottingham
  • 49. Magesh NS, Chandrasekar N, Soundranayagam JP (2012) Delineation of groundwater potential zones in Theni district, Tamil Nadu, using remote sensing, GIS and MIF techniques. Geosci Front 3(2):189–196
  • 50. Milanović PT (1981) Karst hydrogeology. Water Resources Publications, Colorado
  • 51. Milanović PT (2005) Water resources engineering in karst. Taylor and Francis, Washington
  • 52. Mogaji KA, Lim HS (2018) Application of Dempster-Shafer theory of evidence model to geoelectric and hydraulic parameters for groundwater potential zonation. J Astron Geophys 7:134–148
  • 53. Mohammadi Z, Alijani F, Rangzan K (2013) DEFLOGIC: a method for assessment of groundwater potential in karst terrains: Gurpi Anticline. Southwest Iran Arab J Geosci 7(9):3639–3655
  • 54. Murmu P, Kumar M, Lal D, Sonker I, Singh SK (2019) Delineation of groundwater potential zones using geospatial techniques and analytical hierarchy process in Dumka district, Jharkhand, India. Groundwat Sustain Devel 9:100239
  • 55. Nag SK (2005) Application of lineament density and hydrogeomorphology to delineate groundwater potential zones of Baghmundi block in Purulia district, West Bengal. J Indian Soc Remote Sens 33(4):521–529
  • 56. Nair HC, Padmalal D, Joseph A, Vinod PG (2017) Delineation of groundwater potential zones in river basins using geospatial tools—an example from southern western Ghats, Kerala. India J Geovis Spat Anal 1(1):1–16
  • 57. Nassery HR, Alijani F, Nakhaei M (2013) The comparison of hydrodynamic characteristics of karst aquifers: application on two karst formations in Zagros (Asmari and Ilam-Sarvak) southwest Iran. Arab J Geosci 7(11):4809–4818
  • 58. Nassery HR, Zeydalinejad N, Alijani F, Shakiba A (2021) A proposed modelling towards the potential impacts of climate change on a semi-arid, small-scaled aquifer: a case study of Iran. Environ Monit Assess 193(4):1–32
  • 59. Nassery HR, Alijani F (2005) The non-conformity of the hydrogeology and geomorphology of the Asmari anticline karst. Proceeding of 9th Symposium of Geological Society of Iran, August 2005, Tehran, Iran
  • 60. Nassery HR (1992) The hydrogeological study of karstic springs in Doroudzan dam basin. Dissertation, University of Shiraz [In Persian]
  • 61. Nguyen NT, Pham NH, Pham XC, Nguyen TTH, Nguyen VL, Duong TTT (2013) Application of multimedia methodology for investigation of karst water in highland regions of Ha Giang Province. Vietnam Environ Earth Sci 70:531–542
  • 62. Niyazi BA, Ahmed M, Masoud MZ, Rashed MA, Basahi JM (2019) Sustainable and resilient management scenarios for groundwater resources of the Red Sea coastal aquifers. Sci Total Environ 690:1310–1320
  • 63. Papadopoulou-Vrynioti K, Bathrellos GD, Skilodimou HD, Kaviris G, Makropoulos K (2013) Karst collapse susceptibility mapping considering peak ground acceleration in a rapidly growing urban area. Eng Geol 158:77–88
  • 64. Preeja KR, Joseph S, Thomas J, Vijith H (2011) Identification of groundwater potential zones of a tropical river basin (Kerala, India) using remote sensing and GIS techniques. J Indian Soc Remote Sens 39(1):83–94
  • 65. Qarqori K, Rouai M, Moreau F, Saracco G, Dauteuil O, Hermitte D, Boualoul M, de Veslud CLC (2012) Geoelectrical tomography investigating and modeling of fractures network around Bittit Spring (Middle Atlas, Morocco). Int J Geophys 258:1–13
  • 66. Raeisi E (2002) Carbonate karst caves in Iran. In: Kranjc A (ed) Evolution of karst: from prekarst to cessation. Ljubljana, Inštitut Za Raziskovanje Krasa, pp 339–344
  • 67. Rekapalli R, Kumar D, Sarma VS (2019) Resolution enhancement for geoelectrical layer interpretation of electrical resistivity model from composite dataset: implication from physical model studies. Curr Sci 116(8):1356–1362
  • 68. Richey AS, Thomas BF, Lo MH, Reager JT, Famiglietti JS, Voss K, Swenson S, Rodell M (2015) Quantifying renewable groundwater stress with GRACE. Water Resour Res 51(7):5217–5238
  • 69. Richey AS (2014) Stress and resilience in the world's largest aquifer systems: a GRACE-based methodology. Dissertation, University of California
  • 70. Roy A, Apparao A (1971) Depth of investigation in direct current methods. Geophysics 36(5):943–959
  • 71. Saraf AK, Choudhury PR (1998) Integrated remote sensing and GIS for groundwater exploration and identification of artificial recharge sites. Int J Remote Sens 19:1825–1841
  • 72. Shekhar S, Pandey AC (2015) Delineation of groundwater potential zone in hard rock terrain of India using remote sensing, geographical information system (GIS) and analytic hierarchy process (AHP) techniques. Geocarto Int 30(4):402–421
  • 73. Suganthi S, Elango L, Subramanian SK (2013) Groundwater potential zonation by Remote Sensing and GIS techniques and its relation to the Groundwater level in the Coastal part of the Arani and Koratalai River Basin. Southern India Earth Sci Res J 17(2):87–95
  • 74. Sultan AS, Essa KSAT, Khalil MH, El-Nahry AEH, Galal ANH (2017) Evaluation of groundwater potentiality survey in south Ataqa- northwestern part of Gulf of Suez by using resistivity data and site-selection modeling. J Astron Geophys 6:230–243
  • 75. Telford WM, Geldart LP, Sheriff RE (1990) Applied geophysics. Cambridge University Press, Cambridge
  • 76. Thapa R, Gupta S, Guin S, Kaur H (2017) Assessment of groundwater potential zones using multi-influencing factor (MIF) and GIS: a case study from Birbham district. West Bengal Appl Water Sci 7(7):4117–4131
  • 77. Thilagavathi N, Subramani T, Suresh M, Karunanidhi D (2015a) Mapping of groundwater potential zones in Salem Chalk Hills, Tamil Nadu, India, using remote sensing and GIS techniques. Environ Monit Assess 187:164
  • 78. Thilagavathi N, Subramani T, Suresh M (2015b) Land use/land cover change detection analysis in Salem Chalk hills, South India using remote sensing and GIS. Disaster Adv 8:44–52
  • 79. Thomas BF, Caineta J, Nanteza J (2017) Global assessment of groundwater sustainability based on storage anomalies. Geophys Res Lett 44(22):445–455
  • 80. Tolche AD (2021) Groundwater potential mapping using geospatial techniques: a case study of Dhungeta-Ramis sub-basin. Ethiopia Geol Ecol Landsc 5(1):65–80
  • 81. Vander-Velper BPA (2004) WinResist version 1.0: resistivity depth sounding interpretation software. ITC, the Netherlands
  • 82. Vereecken H, Binley A, Cassiani G, Revil A, Titov K (2006) Applied hydrogeophysics. Springer, the Netherlands
  • 83. Zeydalinejad N, Nassery HR, Shakiba A, Alijani F (2020a) Prediction of the karstic spring flow rates under climate change by climatic variables based on the artificial neural network: a case study of Iran. Environ Monit Assess 192(6):375
  • 84. Zeydalinejad N, Nassery HR, Alijani F, Shakiba A (2020b) Forecasting the resilience of Bibitarkhoun karst spring, southwest Iran, to the future climate change. Model Earth Syst Environ 6(4):2359–2375
  • 85. Zeydalinejad N, Nassery HR, Shakiba A, Alijani F (2020c) Simulation of karst aquifer water level under climate change in Lali region, Khouzestan Province. SW Iran Nivar 44(108–109):97–109 ([In Persian])
  • 86. Zeydalinejad N, Nassery HR, Shakiba A, Alijani F (2021) The evaluations of NEX-GDDP and Marksim downscaled datasets over Lali region, southwest Iran. J Earth Space Phys 46(4):213–230
  • 87. Zeydalinejad N (2013) Groundwater potential in Susan karst, north of Izeh. Dissertation, Shahid Beheshti University [In Persian]
  • 88. Zötl JG (1974) Karst hydrogeology. Springer Verlag, Vienna
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-da62035c-c089-4e92-9d9f-493630731cf0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.