PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Aerobic Methane Emission from Plant: Comparative Study of Different Communities and Plant Species of Alpine Meadow

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study was aimed at qualifying the methane emission ability of different communities in alpine meadow, and monitoring if the dominant species from these communities could emit methane in a sand culture experiment. Using the static chamber technique and gas chromatography method, two experiments were conducted in the field and in laboratory. First, the methane flux rate was measured in plant communities: natural alpine meadows (NM), Elymus nutans pasture (EP), herbaceous community in shrub (HS), and a Poa fruticosa meadow (PS). A 3-month sand culture experiment was conducted to show the non-microbial methane emission from living plants. Average methane emission rates were estimated to be 16.83 µg m-2 h-1 (range -49.3–107.8), 28.49 µg m-2 h-1 (range -55.0–96.2) and 20.91 µg m-2 h-1 (range -31.9– 145.8) for NM, EP, and PS, respectively. Methane emission rate from EP was significantly higher than from NM during the growing season. The reclaim of grassland would enhance the methane emission in this aera through this one year's measurement, but whether this conclusion suit to the whole Tibet Plateau, it remains further longer time and larger spatial scale experiments to verify it. The result of the sand culture experiment showed that some plant species emitted methane in an aerobic, nonmicrobial environment, most of herbaceous species showed a methane emission characteristic, the methane emission from plant may have a species dependent characteristic.
Rocznik
Strony
223--232
Opis fizyczny
Bibliogr. 36 poz., rys., tab.
Twórcy
autor
  • Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, 59 Xiguan Street, Xining, Qinghai P. R. 810008, China
  • College of Resource and Environment, University of the Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100039, China
autor
  • Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, 59 Xiguan Street, Xining, Qinghai P. R. 810008, China
autor
  • Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, 59 Xiguan Street, Xining, Qinghai P. R. 810008, China
  • College of Resource and Environment, University of the Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100039, China
autor
  • Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, 59 Xiguan Street, Xining, Qinghai P. R. 810008, China
  • College of Resource and Environment, University of the Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100039, China
autor
  • College of Resource and Environment, University of the Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100039, China
autor
  • Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, 59 Xiguan Street, Xining, Qinghai P. R. 810008, China
autor
  • Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, 59 Xiguan Street, Xining, Qinghai P. R. 810008, China
autor
  • Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, 59 Xiguan Street, Xining, Qinghai P. R. 810008, China
autor
  • Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, 59 Xiguan Street, Xining, Qinghai P. R. 810008, China
  • College of Resource and Environment, University of the Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100039, China
autor
  • Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, 59 Xiguan Street, Xining, Qinghai P. R. 810008, China
Bibliografia
  • 1. Andreae M., Merlet P. 2001 — Emission of trace gases and aerosols from biomass burning — Global Biogeochem. Cycles, 15: 955–966.
  • 2. Beerling D.J., Gardiner T., Leggett G., Mcleod A., Quick W. 2008 —Missing methane emissions from leaves of terrestrial plants — Global Change Biol. 14: 1821–1826.
  • 3. Brüggemann N., Meier R., Steigner D., Zimmer I., Louis S., Schnitzler J.P.2009 — Nonmicrobial aerobic methane emission from poplar shoot cultures under low-light conditions — New Phytol. 182: 912–918.
  • 4. Bruhn D., Moller I.M., Mikkelsen T.N., Ambus P. 2012 — Terrestrial plant methane production and emission — Physiol. Plantarum, 144:201–209.
  • 5. Cao G.M., Xu X.L., Long R.J., Wang Q., Wang C., Du Y.G., Zhao X.Q.2008 — Methane emissions by alpine plant communities in the Qinghai- Tibet Plateau — Biol. Lett. 4: 681–684.
  • 6. Carmo J.B., Keller M., Dias J.D., Camargo P.B., Crill P. 2006 — A source of methane from upland forests in the Brazilian Amazon — Geophy. Res. Lett. 33: 3622–3631.
  • 7. Chen J., Lee X., Zhou Z., Wang B., Xing Y., Cheng H., Tang Y. 2013 —The effects of litter layer and soil properties on the soil-atmosphere fluxes of greenhouse gases in Karst forest, southwest China — Pol. J. Ecol. 61:79–92.
  • 8. Crutzen P.J., Andreae M.O. 1990 — Biomass burning in the tropics: Impact on atmospheric chemistry and biogeochemical cycles — Science, 250: 1669–1678.
  • 9. Crutzen P., Sanhueza E., Brenninkmeijer C. 2006 — Methane production from mixed tropical savanna and forest vegetation in Venezuela — Atmos. Chem. Phys. 6: 3093–3097.
  • 10. Du Y.G., Cui Y., Xu X.L., Liang D.Y., Long R.J., Cao G.M. 2008 — Nitrous oxide emissions from two alpine meadows in the Qinghai-Tibetan Plateau— Plant Soil, 311: 245–254.
  • 11. Dueck T.A., De V. R., Poorter H., Persijn S., Gorissen A., De V.W., Schapendonk A., Verhagen J., Snel J., Harren F.J. 2007 — No evidence for substantial aerobic methane emission by terrestrial plants: a 13C-labelling approach — New Phytol. 175: 29–35.
  • 12. Etiope G., Klusman R.W. 2002 — Geologic emissions of methane to the atmosphere — Chemosphere, 49: 777–789.
  • 13. Forster P., Ramaswamy V., Artaxo P., Berntsen T., Betts R., Fahey D.W., Haywood J., Lean J., Lowe D.C., Myhre G. 2007 — Changes in atmospheric constituents and in radiative forcing (In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Ed: S. Solomon) — Cambridge University Press, Cambridge, United Kingdom, pp. 129–234.
  • 14. Frankenberg C., Meirink J., Van W.M., Platt U., Wagner T. 2005 —Assessing methane emissions from global space-borne observations —Science, 308: 1010–1014.
  • 15. Ghyczy M., Torday C., Boros M. 2003 — Simultaneous generation of methane, carbon dioxide, and carbon monoxide from choline and ascorbic acid: a defensive mechanism against reductive stress? — FASEB J. 17:1124–1126.
  • 16. Ghyczy M., Torday C., Kaszaki J., Szabó A., Czóbel M., Boros M. 2008 —Hypoxia-induced generation of methane in mitochondria and eukaryotic cells - An alternative approach to methanogenesis — Cell. Physiol. Biochem. 21: 251–258.
  • 17. Inubushi K., Hori K., Matsumoto S., Umebayashi M., Wada H. 1989 —Methane emission from the flooded paddy soil to the atmosphere through rice plant — Jpn. J. Soil Sci. Plant Nutr. 60: 2032–2038.
  • 18. Keppler F., Hamilton J.T., Bras M., Rockmann T. 2006 — Methane emissions from terrestrial plants under aerobic conditions — Nature, 439:187–191.
  • 19. Klein J., Harte J., Zhao X. 2001 — Global change research from the Rocky Mountains to the Qinghai-Tibet Plateau: implications for ecosystem carbon storage — Formation and Evolution, Environmental Change and Sustainable Development on Tibetan Plateau, Academy Press, Beijing, pp.305–315.
  • 20. Klein J.A., Harte J., Zhao X.Q. 2007 — Experimental warming, not grazing, decreases rangeland quality on the Tibetan Plateau — Ecol. Appl.17: 541–557.
  • 21. Krüger M., Beckmann S., Engelen B., Thielemann T., Cramer B., Schippers A., Cypionka H. 2008 — Microbial methane formation from hard coal and timber in an abandoned coal mine — Geomicrobiol. J. 25:315–321.
  • 22. Liu X., Chen B. 2000 — Climatic warming in the Tibetan Plateau during recent decades — Int. J. Climatol. 20: 1729–1742.
  • 23. Miller J.B., Gatti L.V., d'Amelio M.T., Crotwell A.M., Dlugokencky E.J., Bakwin P., Artaxo P., Tans P.P. 2007 — Airborne measurements indicate large methane emissions from the eastern Amazon basin — Geophys. Res. Lett. 34: 1211–1218.
  • 24. Sanhueza E., Donoso L. 2006 — Methane emission from tropical savanna Trachypogon sp. Grasses — Atmos. Chem. Phys. 6: 5315–5319.
  • 25. Sinha V., Williams J., Crutzen P., Lelieveld J. 2007 — Methane emissions from boreal and tropical forest ecosystems derived from in-situ measurements — Atmos. Chem. Phys. 7: 11–14.
  • 26. Striegl R.G. 1993 — Diffusional limits to the consumption of atmospheric methane by soils — Chemosphere, 26: 715–720.
  • 27. Tang H.Z., Zhao X., Zhou L. 2006 — Long-term grazing alters species composition and biomass of a shrub meadow on the Qinghai-Tibet Plateau — Pak. J. Bot. 38: 1055–1069.
  • 28. Vigano I., Rockmann T., Holzinger R., Van Dijk A., Keppler F., Greule M., Brand W., Geilmann H., Van Weelden H. 2009 — The stable isotope signature of methane emitted from plant material under UV irradiation —Atmos. Environ. 43: 5637–5646.
  • 29. Vigano I., Van Weelden H., Holzinger R., Keppler F., Rockmann T. 2008 —Effect of UV radiation and temperature on the emission of methane from plant biomass and structural components — Biogeosciences, 5:243–270.
  • 30. Wang Z.P., Han X.G., Wang G.G., Song Y., Gulledge J. 2007 — Aerobic methane emission from plants in the Inner Mongolia steppe — Environ. Sci. Technol., 42: 62–68.
  • 31. Wang Z., Keppler F., Greule M., Hamilton J.T. 2011 — Non-microbial methane emissions from fresh leaves: Effects of physical wounding and anoxia — Atmo. Enviro. 45: 4915–4921.
  • 32. Wang S.P., Yang X., Lin X., Hu Y., Luo C.Y., Xu G., Zhang Z., Su A., Chang X.F., Chao Z. 2008 — Methane emission by plant communities in an alpine meadow on the Qinghai-Tibetan Plateau: a new experimental study of alpine meadows and oat pasture — Biol. Lett. 5:535–538.
  • 33. Wang Z.P., Zhang J.Q., Li H.L., Huang X.G. 2009 — Physical injury stimulates aerobic methane emissions from terrestrial plants —Biogeosciences, 6: 1403–1420.
  • 34. Zhang Y.L., Li B.Y., Zheng D. 2002 — A discussion on the boundary and area of the Tibetan Plateau in China — Geogr. Res. 21: 1–8 (in Chinese, English summary).
  • 35. Zhou L., Li J.L., Tang J., Wen Y.P., Zhang X.C. 2004 — Variations of background atmospheric methane at Mt. Waliguan, China — Acta Scien. Circum. 24: 91–95 (in Chinese, English summary).
  • 36. Zhou X., Hao Y.B. 2010 — Effect of 5 years long cessation of grazing on methane uptake in a semi-arid grassland — Pol. J. Ecol. 58: 801–804.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-da572d99-e4ec-4fa9-aac8-9de0626a2f40
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.