PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The extraordinary gravity of three atom 4π-components and 1,3-dienes to C20-nXn fullerenes; a new gate to the future of Nano technology

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A quick glance to the adsorption, sensing, and energy storage abilities of C<sub>20</sub> fullerene and its derivatives indicate that this small carbon cluster may have extraordinary properties which would make it a key part of the future of Nano actuators and Nano machines. For example, in the case of the gravity of three atom 4π-components (TACs) to these carbon cages, it should be noted that; the rate constants (K)s of the reaction of C<sub>20</sub> fullerene with 1,3-butadiene (Diels-Alder (DA) process), and with 2-furan nitrile oxide ([3+2] cycloaddition (32CA process)) are 2.51(10<sup>11</sup>) M<sup>-1</sup> s<sup>-1</sup>, and 1.4(10<sup>7</sup>) M<sup>-1</sup>s<sup>-1</sup>, respectively. However, the rate constant of the 32CAreaction between norbornadiene and 3,4-dihydro isoquinoline-N-oxide is about 2.56(10<sup-5</sup>) M<sup>-1</sup> s<sup>-1</sup> (both by DFT and by experimental results). This simple comparison could show the extraordinary gravity of some TACs and dienes to C<sub>20</sub> fullerenes.
Czasopismo
Rocznik
Strony
46--68
Opis fizyczny
Bibliogr. 153 poz., rys.
Twórcy
  • Department of Chemistry, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran
  • Department of Chemistry, Tehran Markaz Branch, Islamic Azad University, Tehran, Iran
Bibliografia
  • [1] Maiuolo, L.; Algieri, V.; Olivito, F.; De Nino, A.; Recent developments on 1, 3-dipolar cycloaddition reactions by catalysis in green solvents. Catalysts 2020, 10, 65. DOI: 10.3390/catal10010065
  • [2] Roscales, S.; Plumet, J.; Metal-catalyzed 1, 3-dipolar cycloaddition reactions of nitrile oxides. Organic & Biomolecular Chemistry 2018, 16, 8446-8461. DOI: 10.1039/C8OB02072H
  • [3] Lee, K.R.; Ahn, S.; Lee, S.G.; Synergistic Pd (0)/Rh (II) Dual Catalytic [6+3] Dipolar Cycloaddition for the Synthesis of Monocyclic Nine-Membered N, O-Heterocycles and Their Alder-ene Rearrangement to Fused Bicyclic Compounds. Organic Letters 2021, 23, 3735-3740. DOI: 10.1021/acs.orglett.1c01135
  • [4] Martina, K.; Tagliapietra, S.; Veselov, V.V.; Cravotto, G.; Green protocols in heterocycle syntheses via 1, 3-dipolar cycloadditions. Frontiers in Chemistry 2019, 7, 95. DOI: 10.3389/fchem.2019.00095
  • [5] Chen, L.; Geng, H.Y.; Chen, Z.J.; Liang, W.; Jiao, W.Y.; Rapid entry to bispiro heterocycles merging five pharmacophores using phase-transfer catalysis. Tetrahedron Letters 2021, 78, 153276. DOI: 10.1016/j.tetlet.2021.153276
  • [6] Brown, D.J.; Chemistry of heterocyclic compounds (Vol. 52) 1950, Wiley-Interscience.
  • [7] Łapczuk-Krygier, A.; Kącka-Zych, A.; Kula, K.; Recent progress in the field of cycloaddition reactions involving conjugated nitroalkenes. Current Chemistry Letters 2019, 8, 13. DOI: 10.5267/j.ccl.2018.12.002
  • [8] Proctor, G.R.; Chemistry of Heterocyclic Compounds (Vol. 56) 1950, Wiley-Interscience. DOI: 10.5267/j.ccl.2018.12.002
  • [9] Pokhodylo, N.T.; Tupychak, M.A.; Shyyka, O.Y.; Obushak, M.D.; Some Aspects of the Azide-Alkyne 1, 3-Dipolar Cycloaddition Reaction. Russian Journal of Organic Chemistry 2019, 55, 1310-1321. DOI: 10.1134/S1070428019090082
  • [10] Mames, A.; Stecko, S.; Mikołajczyk, P.; Soluch, M.; Furman, B; Chmielewski, M.; Direct, catalytic synthesis of carbapenams via cycloaddition/rearrangement cascade reaction: unexpected acetylenes’ structure effect. The Journal of Organic Chemistry 2010, 75, 7580-7587. DOI: 10.1021/jo101355h
  • [11] Joshi, B.P.; Memeo, M.G.; Quadrelli, P.; Solid-phase supported nitrosocarbonyl intermediates: Old scope and new limitations in the organic synthesis. Tetrahedron Letters 2017, 58, 3271-3275. DOI: 10.1016/j.tetlet.2017.07.026
  • [12] Rodionov, E.I.; Kovaleva, A.A.; Zorina, A.D.; Starova, G.L.; Trifonov, R.E.; Synthesis of 2-Mono-and 2, 2-Bis [2-(1H-tetrazol-5-yl) ethyl] Derivatives of Dipterocarpol. Russian Journal of Organic Chemistry 2018, 54, 485-489. DOI: 10.1134/S107042801803017X
  • [13] Siebert, J. M.; Baier, G.; Musyanovych, A.; Landfester, K.; Towards copper-free nanocapsules obtained by orthogonal interfacial “click” polymerization in miniemulsion. Chemical Communications 2012, 48, 5470-5472. DOI: 10.1039/C2CC30253E
  • [14] Decker, Z.C.J.; Au, K.; Vereecken, L.; Sheps, L.; Direct experimental probing and theoretical analysis of the reaction between the simplest Criegee intermediate CH2OO and isoprene. Physical Chemistry Chemical Physics 2017, 19, 8541-8551. DOI: 10.1039/C6CP08602K
  • [15] Poty, S.; Membreno, R.; Glaser, J.M.; Ragupathi, A.; Scholz, W.W.; Zeglis, B.M.; Lewis, J.S.; The inverse electron-demand Diels-Alder reaction as a new methodology for the synthesis of 225 Ac-labelled radioimmunoconjugates. Chemical Communications 2018, 54, 2599-2602. DOI: 10.1039/C7CC09129J
  • [16] Jahanshad, M.; Manafi, M.; Mousavi-Safavi, S.M.; Homami, S.S.; Ghazanfarpour-Darjani, M.; A copper-catalyzed reaction between terminal alkynes, acetylenic esters, and oxiranes: efficient synthesis of 2H-pyran-4-carboxylate. Monatshefte für Chemie Chemical Monthly 2020, 151, 113-122. DOI: 10.1007/s00706-019-02526-z
  • [17] Ramapanicker, R.; Chauhan, P.; Click Chemistry: Mechanistic and Synthetic Perspectives. Click Reactions in Organic Synthesis 2016, 1-24. DOI: 10.1002/9783527694174
  • [18] Choi, A.; Morley, R.M.; Coldham, I.; Synthesis of pyrrolo [1, 2-a] quinolines by formal 1, 3-dipolar cycloaddition reactions of quinolinium salts. Beilstein journal of organic chemistry 2019, 15, 1480-1484. DOI: 10.3762/bjoc.15.149
  • [19] Alkayar, Z.T.; Coldham, I.; Cascade cyclization and intramolecular nitrone dipolar cycloaddition and formal synthesis of 19-hydroxyibogamine. Organic & Biomolecular Chemistry 2019, 17, 66-73. DOI: 10.1039/C8OB02839G
  • [20] Popa, M.M.; Shova, S.; Hrubaru, M.; Barbu, L.; Draghici, C.; Dumitrascu, F.; Dumitrescu, D.E.; Introducing chirality in halogenated 3-arylsydnones and their corresponding 1-arylpyrazoles obtained by 1, 3-dipolar cycloaddition. RSC advances 2020, 10, 15656-15664. DOI: 10.1039/D0RA02368J
  • [21] Mekni, N.H.; Cu+‐catalyzed 1, 3‐Dipolar Intramolecular Click Opposite Cross Cyclization Reaction of Polyoxyethylene Bis (azido‐terminal alkynes): Synthesis of New 1, 2, 3‐Triazolo‐crown Ethers. Journal of Heterocyclic Chemistry 2017, 54, 2664-2669. DOI: 10.1002/jhet.2866
  • [22] Trapani, M.; Castriciano, M.A.; Collini, E.; Bella, G.; Cordaro, M.; Supramolecular BODIPY based dimers: synthesis, computational and spectroscopic studies. Organic & Biomolecular Chemistry 2021, 19, 8118-8127; DOI: 10.1039/D1OB01433A b) Oladee, R.; Zareyee, D.; Khalilzadeh, M.A.; KF/clinoptilolite nanoparticles as an efficient nanocatalyst for the Strecker synthesis of α-aminonitriles. Monatshefte für Chemie Chemical Monthly 2020, 151, 611-615. DOI: 10.1007/s00706-020-02574-w
  • [23] Hossaini, Z.; Rostami-Charati, F.; Ghambarian, M.; Siadati, S.A.; Synthesis of a new class of phosphonate derivatives using a three component reaction of trialkyl phosphites or triaryl phosphites in water. Phosphorus, Sulfur, and Silicon and the Related Elements 2015, 190, 1177-118. DOI: 10.1080/10426507.2014.978329
  • [24] a) Dadras, A.; Rezvanfar, M.A.; Beheshti, A.; Naeimi, S.S.; Siadati, S.A.; An Urgent Industrial Scheme both for Total Synthesis, and for Pharmaceutical Analytical Analysis of Umifenovir as an Anti-Viral API for Treatment of COVID-19. Combinatorial Chemistry & High Throughput Screening 2022, 25, 838-846; DOI: 10.2174/1386207324666210203175631 b) Rostami-Charati, F.; Hossaini, Z.; Sheikholeslami-Farahani, F.; Azizi, Z.; Siadati, S.A.; Synthesis of 9H-furo [2, 3-f] chromene derivatives by promoting ZnO nanoparticles. Combinatorial chemistry & high throughput screening 2015, 18, 872-880, DOI: 10.2174/1386207318666150525094109
  • [25] Liu, Y.; Li, J.; Quantitative Dynamics of the N2O+C2H2→ Oxadiazole Reaction: A Model for 1, 3-Dipolar Cycloadditions. ACS omega 2020, 5, 23343-23350. DOI: 10.1021/acsomega.0c03210
  • [26] Hashemi, M.; Taherpour, A.A.; Structural Assessment of Hydrogen Bonds on Methylpentynol-Azide Clusters to Achieve Regiochemical Outcome of 1, 3-Dipolar Cycloaddition Reactions Using Density Functional Theory. ACS omega 2020, 5, 5964- 5975. DOI: 10.1021/acsomega.9b04333
  • [27] Blom, J.; Vidal‐Albalat, A.; Jørgensen, J.; Barløse, C.L.; Jessen, K.S.; Iversen, M.V.; Jørgensen, K.A.; Directing the Activation of Donor-Acceptor Cyclopropanes Towards Stereoselective 1, 3‐Dipolar Cycloaddition Reactions by Brønsted Base Catalysis. Angewandte Chemie International Edition 2017, 56, 11831-11835. DOI: 10.1002/anie.201706150
  • [28] Galal, A.; Hesselbach, X.; Probability-based path discovery protocol for electromagnetic nano-networks. Computer Networks 2020, 174, 107246. DOI: 10.1016/j.comnet.2020.107246
  • [29] Naaz, S.; Asghar, A.; Artificial intelligence, nano-technology and genomic medicine: The future of anaesthesia. Journal of Anaesthesiology Clinical Pharmacology 2022, 38, 11- 17. DOI: 10.4103/joacp.JOACP_139_20
  • [30] Galal, A.; Hesselbach, X.; Nano-networks communication architecture: Modeling and functions. Nano Communication Networks 2018, 17, 45-62. DOI: 10.1016/j.nancom.2018.07.001
  • [31] Bohara, R.A.; Thorat, N.D.; Pawar, S.H.; Role of functionalization: strategies to explore potential nano-bio applications of magnetic nanoparticles. RSC advances 2016, 6, 43989-44012. DOI: 10.1039/C6RA02129H
  • [32] Patel, A.; Mukundan, S.; Wang, W.; Karumuri, A.; Sant, V.; Mukhopadhyay, S.M.; Sant, S; Carbon-based hierarchical scaffolds for myoblast differentiation: Synergy between nano-functionalization and alignment. Acta biomaterialia 2016, 32, 77-88. DOI: 10.1016/j.actbio.2016.01.004
  • [33] a) Murugappan, G.; Sreeram, K.J.; Nano-biocatalyst: Bi-functionalization of protease and amylase on copper oxide nanoparticles. Colloids and Surfaces B: Biointerfaces 2021, 197, 111386; DOI: 10.1016/j.colsurfb.2020.111386 b) Mirabi, A.; Shokuhi Rad, A.; Siadati, S. A.; Alavi Tabari, S. A. R.; Synthesis and application of highly active dithiooxamide functionalised multi-walled carbon nanotubes toward mercury removal from aqueous solution. Pakistan Journal of Scientific & Industrial Research Series A: Physical Sciences 2016, 59, 23-29.
  • [34] a) Amirsoleimani, M.; Khalilzadeh, M. A.; Zareyee, D.; Preparation and catalytic evaluation of a palladium catalyst deposited over modified clinoptilolite (Pd@ MCP) for chemoselective N-formylation and N-acylation of amines. Journal of Molecular Structure 2021, 1225, 129076; DOI: 10.1016/j.molstruc.2020.129076 b) Nasrollahpour, H.; Naseri, A.; Rashidi, M. R.; Khalilzadeh, B. Application of green synthesized WO3-poly glutamic acid nanobiocomposite for early stage biosensing of breast cancer using electrochemical approach. Scientific reports 2021, 11, 1-12; DOI: 10.1038/s41598-021-03209-8 c) Nasiri, A., Khalilzadeh, M. A.; Zareyee, D.; A novel magnetic starch nanocomposite as a green heterogeneous support for immobilization of Cu nanoparticles and selective catalytic application in eco-friendly media. Inorganic and Nano-Metal Chemistry 2021, 1-15. DOI: 10.1080/24701556.2021.1980031
  • [35] a) Xu, C.A.; Lu, M.; Wu, K.; Shi, J.; Functionalization of nano-cellulose by coupling agent with green strategy. Inorganic Chemistry Communications 2021, 134, 108939; DOI: 10.1016/j.inoche.2021.108939 b) Murugappan, G.; Sreeram, K.J.; Nano biocatalyst: Bi-functionalization of protease and amylase on copper oxide nanoparticles. Colloids and Surfaces B: Biointerfaces 2021, 197, 111386; DOI: 10.1016/j.colsurfb.2020.111386 c) Li, L.; Li, Y.; Ye, Y.; Guo, R.; Wang, A.; Zou, G.; Ji, X.; Kilogram-scale synthesis and functionalization of carbon dots for superior electrochemical potassium storage. ACS nano 2021, 15, 6872-6885. DOI: 10.1021/acsnano.0c10624
  • [36] a) Siadati, A.; A theoretical study on the possibility of functionalization of C20 fullerene via its Diels-Alder reaction with 1, 3-butadiene. Letters in Organic Chemistry 2016, 13, 2-6; DOI: 10.2174/1570178612666151002002526 b) Sabirov, D.S., Khursan, S.L., & Bulgakov, R.G.; 1, 3-Dipolar addition reactions to fullerenes: The role of the local curvature of carbon surface. Russian Chemical Bulletin 2008, 57, 2520-2525. DOI: 10.1007/s11172-008-0362-7
  • [37] Siadati, S.A.; Mirabi, A.; DFT study on the functionalization of C20 Fullerene via its 1, 3- dipolar cycloaddition with 4-pyridine nitrile oxide. Iran J Org Chem 2013, 5, 10991102.
  • [38] Siadati, S.A.; Mirabi, A.; Diels-Alder versus 1, 3-dipolar cycloaddition pathways in the reaction of C20 fullerene and 2-furan nitrile oxide. Progress in Reaction Kinetics and Mechanism 2015, 40, 383-390. DOI: 10.3184/146867815X1441375228606
  • [39] Siadati, S.A.; Alinezhad, M.; A theoretical study on the functionalisation process of C18NB fullerene through its open [5, 5] cycloaddition with 4-pyridine nitrile oxide. Progress in Reaction Kinetics and Mechanism 2015, 40, 169-176. DOI: 10.3184/146867815X14262612008408
  • [40] Siadati, S.A.; Kula, K.; Babanezhad, E.; The possibility of a two-step oxidation of the surface of C20 fullerene by a single molecule of nitric (V) acid, initiate by a rare [2+3] cycloaddition. Chemical Review and Letters 2019, 2, 2-6. DOI: 10.22034/CRL.2019.85535
  • [41] Curtius, T.; Theodor Curtius: Ueber die. Ber.Dtsch. Chem. Ges. 1883, 16, 2230-2231. DOI: 10.1002/cber.188301602136
  • [42] Buchner, E.; Einwirkung von Diazoessigäther auf die Aether ungesättigter Säuren. Ber.Dtsch. Chem. Ges. 1888, 21, 2637-47. DOI: 10.1002/cber.18880210283
  • [43] Curtius, T.; Struve, A.; Radenhausen, R.; Hydrazide und Azide organischer Säuren. 32. Ueber Azide substituirter Benzoësäuren. Journal für Praktische Chemie 1895, 52, 227- 242. DOI: 10.1002/prac.18950520118
  • [44] Pechmann, H.V.; Ueber Diazomethan. Ber.Dtsch. Chem. Ges. 1894, 27,1888-1891. DOI: 10.1002/cber.189402702141
  • [45] Beckmann E.; Zur kenntniss der aldoxime. VII. Ber.Dtsch. Chem. Ges. 1890, 23, 3331- 3341. DOI: 10.1002/cber.189002302295
  • [46] Werner, A.; Buss, H.; Ueber benzhydroximsäurechlorid. Ber.Dtsch. Chem. Ges. 1894, 27, 2193-201. DOI: 10.1002/cber.189402702201
  • [47] Smith, F.R.; Muskrat investigations in Dorchester County, Md. 1938, 1930-34 (No. 474). US Department of Agriculture.
  • [48] Jensen, K.B.; Gothelf, K.V.; Hazell, R.G.; Jørgensen, K.A.; Improvement of TADDOLate− TiCl2-Catalyzed 1, 3-Dipolar Nitrone Cycloaddition Reactions by Substitution of the Oxazolidinone Auxiliary of the Alkene with Succinimide. J. Org. Chem. 1997, 62, 2471- 2477. DOI: 10.1021/jo962214y
  • [49] Hoogenboom, J.; Zuilhof, H.; Wennekes, T.; Versatile Scope of a Masked Aldehyde Nitrone in 1, 3-Dipolar Cycloadditions. Org. Lett. 2015, 17, 5550. DOI: 10.1021/acs.orglett.5b02662
  • [50] Grummitt, O.; Endrey, A. L.; Relative reactivity of maleic anhydride and sulfur dioxide in 1, 4-addition reactions to 2, 3-dimethyl-1, 3-butadiene. J. Am. Chem. Soc. 1960, 82, 3614-3619. DOI: 10.1021/ja01499a035
  • [51] Eberhard, P.; Huisgen, R.; Formation of an allyl anion from 1-pyrazolin-4-yl anion by cycloreversion. Electronic prototype of 1, 3-dipolar cycloaddition. J. Am. Chem. Soc. 1972, 94, 1345-1346. DOI: 10.1021/ja00759a048
  • [52] Gotthardt, H.; Huisgen, R.; Bayer, H.O.; 1, 3-Dipolar cycloaddition reactions. LIII. Question of the 1, 3-dipolar nature of. DELTA. 2-oxazolin-5-ones. J. Am. Chem. Soc. 1970, 92, 4340 4344. DOI: 10.1021/ja00717a034
  • [53] Huisgen, R.; Scheer, W.; Huber, H.; Stereospecific conversion of cis-trans isomeric aziridines to open-chain azomethine ylides. J. Am. Chem. Soc. 1967, 89, 1753-1755. DOI: 10.1021/ja00983a052
  • [54] Huisgen, R.; Grashey, R.; Sauer, J.; Cycloaddition reactions of alkenes.The Alkenes 1964, 1, 739. DOI: 10.1002/9780470771044.ch11
  • [55] Woodward, R.B.; Hoffmann, R.; Cycloaddition reactions of cycloheptatriene and 2, 5- dimethyl-3, 4-diphenylcyclopentadienone. Angew. Chem. Int. Ed. 1969, 8, 781.
  • [56] a) Fukui, K.; Yonezawa, T.; Nagata, C.; Shingu, H.; A molecular orbital theory of reactivity in aromatic hydrocarbons.J. Chem. Phys. 1954, 22, 1433; DOI: 10.1063/1.1740412 b) Harris, F.E.; Molecular orbital theory Adv. Quantum Chem. 1967, 3, 61. DOI: 10.1016/S0065-3276(08)60087-8
  • [57] a) Domingo, L.R.; Molecular electron density theory: a modern view of reactivity in organic chemistry. Molecules 2016, 21, 1319; DOI: 10.3390/molecules21101319 b) Ríos‐Gutiérrez, M., Domingo, L.R.; Unravelling the mysteries of the [3+2] cycloaddition reactions. European Journal of Organic Chemistry 2019, 3, 267-282. DOI: 10.1002/ejoc.201800916
  • [58] Firestone, R.A.; Applications of the Linnett electronic theory to organic chemistry. Part III. Linnett structures for 1, 3-dipoles and for the diradical intermediates in 1, 3-dipolar cycloadditions, J. Chem. Soc. A 1970, 92, 1570. DOI: 10.1039/J19700001570
  • [59] Firestone, R.A.; Application of the Linnett electronic theory to organic chemistry. V. Orientation in 1, 3-dipolar cycloadditions according to the diradical mechanism. Partial formal charges in the Linnett structures of the diradical intermediate J. Org. Chem. 1972, 37, 2181. DOI: 10.1021/jo00978a027
  • [60] Firestone, R.A.; The diradical mechanism for 1, 3-dipolar cycloadditions and related thermal pericyclic reactions. Tetrahedron 1977, 33, 3009. DOI: 10.1016/0040-4020(77)80448-1
  • [61] Huisgen, R.;1, 3-Dipolar cycloadditions. Concerted nature of 1, 3-dipolar cycloadditions and the question of diradical intermediates.J. Org. Chem. 1976, 41, 403. DOI: 10.1021/jo00865a001
  • [62] Houk, K.N.; Firestone, R.A.; Munchausen, L.L.; Stereospecificity of 1, 3-dipolar cycloadditions of p-nitrobenzonitrile oxide to cis-and trans-dideuterioethylene.J. Am. Chem. Soc. 1985, 107, 7227. DOI: 10.1021/ja00310a105
  • [63] Poppinger, D.; Concerted 1, 3-dipolar addition of fulminic acid to acetylene and ethylene. AB initio molecular orbital study. J. Am. Chem. Soc. 1975, 97, 7486-7488. DOI: 10.1021/ja00859a017
  • [64] Huisgen, R.; Weinberger, R.; Are any non-stereospecific 1, 3-dipolar cycloadditions known? A revision. Tetrahedron Lett. 1985, 26, 5119. DOI: 10.1016/S0040-4039(00)98877-4
  • [65] Tsuge, O.; Kanemasa, S.; Takenaka, S.; Stereochemical Study on 1,3-Dipolar Cycloaddition Reactions of Heteroaromatic N-Ylides with Symmetrically Substituted cis and trans Olefins. Bull. Chem. Soc. Jpn. 1985, 58, 3137. DOI: 10.1246/bcsj.58.3137
  • [66] Dignam, K.J.; Hegarty, A.F.; Quain, P.L.; Reactivity of 1, 3-dipoles in aqueous solution. 2. Stereospecific reactions of benzonitrile oxides with oxygen, carbon, and nitrogen nucleophiles.J. Org. Chem. 1978, 43, 388. DOI: 10.1021/jo00397a002
  • [67] Huisgen, R.; Mlostoń, G.; Langhals, E.; The first two-step 1, 3-dipolar cycloadditions: interception of intermediate. J. Org. Chem. 1986, 51, 4085. DOI: 10.1021/jo00371a039
  • [68] Huisgen, R.; Mlostoń, G.; Langhals, E.; The first two-step 1, 3-dipolar cycloadditions: non-stereospecificity. J. Am. Chem. Soc. 1986, 108, 6401. DOI: 10.1021/ja00280a053
  • [69] Coppola, B.P.; Noe, M.C.; Schwartz, D.J.; Abdon, R.L.; Trost, B.M.; Intermolecular 1, 3- dipolar cycloadditions of müchnones with acetylenic dipolarophiles: Sorting out the regioselectivity. Tetrahedron 1994, 50, 93-116. DOI: 10.1016/S0040-4020(01)80739-0
  • [70] Padwa, A.; Pearson, W.H., Synthetic applications of 1, 3-dipolar cycloaddition chemistry toward heterocycles and natural products. 2003, John Wiley and Sons.
  • [71] Huisgen, R.; Mlostoń, G.; Giera, H.; Langhals, E.; Cycloadditions of two thiocarbonyl ylides with α, β-unsaturated esters and nitriles: steric course and mechanism. Tetrahedron 2002, 58, 507. DOI: 10.1016/S0040-4020(01)01147-4
  • [72] Bohm, A.; Webber, A.; Sauer, J.; Nonstereospecific 1, 3-dipolar cycloadditions of azomethine ylides and enamines. Tetrahedron 1999, 55, 9535. DOI: 10.1016/S0040- 4020(99)00517-7
  • [73] Domingo, L.R.; Picher, M.F.; A DFT study of the Huisgen 1, 3-dipolar cycloaddition between hindered thiocarbonyl ylides and tetracyanoethylene. Tetrahedron 2004, 60, 5053. DOI: 10.1016/j.tet.2004.04.024
  • [74] Kuznetsov, M.L.; Theoretical studies on [3+2]-cycloaddition reactions. Russ. Chem. Rev. 2006, 75, 935. DOI: 10.1070/RC2006v075n11ABEH001195
  • [75] Firestone, R.A.; The Low Energy of Concert in Many Symmetry‐Allowed Cycloadditions Supports a Stepwise‐Diradical Mechanism. Int. J. Chem. Kinet. 2013, 45, 415. DOI: 10.1002/kin.20776
  • [76] Jasiński, R.; Competition between the one-step and two-step, zwitterionic mechanisms in the [2+3] cycloaddition of gem-dinitroethene with (Z)-C, N-diphenylnitrone: a DFT computational study. Tetrahedron 2013, 69, 927. DOI: 10.1016/j.tet.2012.10.095
  • [77] Mlostoń, G.; Pipiak, P.; Linden, A.; Heimgartner, H.; Studies on the Reactions of Thiocarbonyl S‐Methanides with Hetaryl Thioketones. Helv. Chim. Acta 2015, 98, 462. DOI: 10.1002/hlca.201500057
  • [78] Mlostoń, G.; Urbaniak, K.; Linden, A.; Heimgartner, H.; Selenophen‐2‐yl‐Substituted Thiocarbonyl Ylides-at the Borderline of Dipolar and Biradical Reactivity. Helv. Chim. Acta 2015, 98, 453. DOI: 10.1002/hlca.201500050
  • [79] Fiorot, R.G.; Vilhena, F.D.S.; Carneiro, J.W.D.M.; Diradical-singlet character of 1, 3- dipoles affects reactivity of 1, 3-dipolar cycloaddition reactions and intramolecular cyclization. J Mol. Model. 2019, 25, 1-8. DOI: 10.1007/s00894-019-4162-9
  • [80] Cardoso, A.L.; Soares, M.I.; 1, 3-dipolar cycloadditions involving allenes: synthesis of five-membered rings. Curr. Org. Chem. 2019, 23, 3064-3134. DOI: 10.2174/1385272823666191203122959
  • [81] Svatunek, D.; Hansen, T.; Houk, K.N.; Hamlin, T.A.; How the Lewis Base F-Catalyzes the 1, 3-Dipolar Cycloaddition between Carbon Dioxide and Nitrilimines. J Org. Chem. 2021, 86, 4320-4325. DOI: 10.1021/acs.joc.0c02963
  • [82] Siadati, S.A.; An example of a stepwise mechanism for the catalyst-free 1, 3-dipolar cycloaddition between a nitrile oxide and an electron rich alkene. Tetrahedron let. 2015, 56, 4857-4863. DOI: 10.1016/j.tetlet.2015.06.048
  • [83] a) Alnajjar, R.A.; Jasiński, R.; Competition between [2+1]-and [4+1]-cycloaddition mechanisms in reactions of conjugated nitroalkenes with dichlorocarbene in the light of a DFT computational study, Journal of Molecular Modeling 2019, 25, 1; DOI: 10.1007/s00894-019-4006-7 b) Siadati, S.A.; Beyond the alternatives that switch the mechanism of the 1, 3-dipolar cycloadditions from concerted to stepwise or vice versa: a literature review. Prog. React. Kinet. Mech. 2016, 41, 331-344. DOI: 10.3184/146867816X14719552202168
  • [83] a) Jasiński, R.; Żmigrodzka, M.; Dresler, E.; Kula, K.; A Full Regioselective and Stereoselective Synthesis of 4‐Nitroisoxazolidines via Stepwise [3+2] Cycloaddition Reactions between (Z)‐C‐(9‐Anthryl)‐N‐arylnitrones and (E)‐3, 3, 3‐Trichloro‐1‐ nitroprop‐1‐ene: Comprehensive Experimental and Theoretical Study. Journal of Heterocyclic Chemistry 2017, 54, 3314-3320; DOI: 10.1002/jhet.2951 b) Siadati, S.A.; The Effect of Position Replacement of Functional Groups on the Stepwise character of 1, 3‐Dipolar Reaction of a Nitrile Oxide and an Alkene. Helv. Chim. Act. 2016, 99, 273- 280. DOI: 10.1002/hlca.201500165
  • [84] Mohtat, B.; Siadati, S.A.; Khalilzadeh, M.A.; Zareyee, D.; The concern of emergence of multi-station reaction pathways that might make stepwise the mechanism of the 1, 3- dipolar cycloadditions of azides and alkynes. J Mol. Struct. 2018, 1155, 58-64. DOI: 10.1016/j.molstruc.2017.10.034
  • [85] a) Jasiński, R.; In the searching for zwitterionic intermediates on reaction paths of [3+2] cycloaddition reactions between 2, 2, 4, 4-tetramethyl-3-thiocyclobutanone S methylide and polymerizable olefins. RSC advances 2015, 5, 101045; DOI: 10.1039/C5RA20747A b) Siadati, S.A.; Effect of steric congestion on the stepwise character and synchronicity of a 1, 3-dipolar reaction of a nitrile ylide and an olefin. J Chem. Res. 2015, 39, 640-644. DOI: 10.3184/174751915X1444837120060
  • [86] Mohtat, B.; Siadati, S.A.; Khalilzadeh, M.A.; Understanding the mechanism of the 1, 3- dipolar cycloaddition reaction between a thioformaldehyde S-oxide and cyclobutadiene: Competition between the stepwise and concerted routes. Prog. React. Kinet. Mech. 2019, 44, 213-221. DOI: 10.1177/1468678319845863
  • [87] Siadati, S.A.; A theoretical study on stepwise-And concertedness of the mechanism of 1, 3-Dipolar cycloaddition reaction between tetra amino ethylene and trifluoro methyl azide. Comb. Chem.High Throughput Screen. 2016, 19, 170-175. DOI: 10.2174/1386207319666151216145408
  • [88] Siadati, S.A.; Mahboobifar, A.; Nasiri, R.; A theoretical study on the reaction pathways and the mechanism of 1, 3-dipolar cycloaddition of vinyl acetylene and methyl azide. Comb. Chem. High Throughput Screen. 2014, 17, 703-708. DOI: 10.2174/138620731708140922163855
  • [89] Houk, K.N.; Gonzalez, J.; Li, Y.; Pericyclic reaction transition states: passions and punctilios, 1935-1995. Account Chem. Res. 1995, 28, 81-90. DOI: 10.1021/ar00050a004
  • [90] a) Jasiński, R.; Kula, K.; Kącka, A.; Mirosław, B.; Unexpected course of reaction between (E)-2-aryl-1-cyano-1-nitroethenes and diazafluorene: why is there no 1, 3- dipolar cycloaddition?. Monatshefte für Chemie-Chemical Monthly 2017, 148, 909; DOI: 10.1007/s00706-016-1893-5 b) Breugst, M.; Reissig, H.U.; The Huisgen Reaction: Milestones of the 1, 3‐Dipolar Cycloaddition. Angewandte Chem. Int. Ed. 2020, 59, 12293-12307. DOI: 10.1002/anie.202003115
  • [91] a) Jasiński, R.; Mróz, K.; Kącka, A.; Experimental and Theoretical DFT Study on Synthesis of Sterically Crowded 2, 3, 3,(4) 5‐Tetrasubstituted‐4‐nitroisoxazolidines via 1, 3-Dipolar Cycloaddition Reactions Between Ketonitrones and Conjugated Nitroalkenes. J Heterocyclic Chem. 2016, 53, 1424-1429; DOI: 10.1002/jhet.2442 b) Fryźlewicz, A.; Olszewska, A.; Zawadzińska, K.; Woliński, P.; Kula, K.; Kącka-Zych, A.; Jasiński, R.; On the Mechanism of the Synthesis of Nitrofunctionalised Δ2-Pyrazolines via [3+2] Cycloaddition Reactions between α-EWG-Activated Nitroethenes and Nitrylimine TAC Systems. Organics 2022, 3, 59. DOI: 10.3390/org3010004
  • [92] Mlostoń, G.; Jasiński, R.; Kula, K.; Heimgartner, H.; A DFT study on the Barton-Kellogg reaction-The molecular mechanism of the formation of thiiranes in the reaction between diphenyldiazomethane and diaryl thioketones. Europ. J Org. Chem. 2020, 2, 176-182. DOI: 10.1002/ejoc.201901443
  • [93] a) Dresler, E.; Kącka-Zych, A.; Kwiatkowska, M.; Jasiński, R.; Regioselectivity, stereoselectivity, and molecular mechanism of [3+2] cycloaddition reactions between 2-methyl-1-nitroprop-1-ene and (Z)-C-aryl-N-phenylnitrones: a DFT computational study. J Mol. Model. 2018, 24(11), 1-12; DOI: 10.1007/s00894-018-3861-y b) Jasiński, R.; Selenyl analog of the (Z)-C, N-diphenylnitrone as the TAC in [3+2] cycloaddition with nitroethene: A DFT computational study. Phosphorus, Sulfur, and Silicon and the Related Elements 2020, 195, 871-876. DOI: 10.1080/10426507.2020.1760865
  • [94] Szczepanek, A.; Jasińska, E.; Kącka, A.; Jasiński, R.; An experimental and quantumchemical study of [2+3] cycloaddition between (Z)-C-(m, m, p trimethoxyphenyl)-N-(p-methyphenyl)-nitrone and (E)-3, 3, 3-trichloro-1-nitroprop-1- ene: mechanistic aspects. Curr. Chem. Lett. 2015, 4, 33-44. DOI: 10.5267/j.ccl.2014.10.003
  • [95] Fryźlewicz, A.; Olszewska, A.; Zawadzińska, K.; Woliński, P.; Kula, K.; Kącka-Zych, A.; Jasiński, R.; On the Mechanism of the Synthesis of Nitrofunctionalised Δ2-Pyrazolines via [3+2] Cycloaddition Reactions between α-EWG-Activated Nitroethenes and Nitrylimine TAC Systems. Organics 2022, 3, 59-76. DOI: 10.3390/org3010004
  • [96] Kącka-Zych, A.; Push-pull nitronates in the [3+2] cycloaddition with nitroethylene: Molecular Electron Density Theory study. J. Mol. Graph. Model. 2020, 97, 107549. DOI: 10.1016/j.jmgm.2020.107549
  • [97] a) Li, L.; Mayer, P.; Stephenson, D.S.; Ofial, A.R.; Mayer, R.J.; Mayr, H.; An Overlooked Pathway in 1, 3-Dipolar Cycloadditions of Diazoalkanes with Enamines. Angewandte Chem. Int. Ed. 2022, 61(12), e202117047; DOI: 10.1002/anie.202117047 b) Yildiz, C.B.; A DFT study on the oxidation of cyclotrisilene by nitrous oxide: the σ-and π-bonds reactivity. Theor. Chem. Account 2020, 139, 1-12 DOI: 10.1007/s00214-019-2540-0
  • [98] a) Yu, Y.; Yang, Z.; Houk, K.N.; Molecular dynamics of the intramolecular 1, 3-dipolar ene reaction of a nitrile oxide and an alkene: non-statistical behavior of a reaction involving a diradical intermediate. Molecular Physics 2019, 117, 1360-1366; DOI: 10.1080/00268976.2018.1549338 b) Soleymani, M.; Chegeni, Z.K.; A molecular electron density theory study on the [3+2] cycloaddition reaction of 5, 5-dimethyl-1- pyrroline N-oxide with 2-cyclopentenone. J. Mol. Graph. Model. 2019, 92, 256-266. DOI: 10.1016/j.jmgm.2019.08.007
  • [99] Yildiz, C.B.; Oxidation of hydro-silaimine, phosphasilene, and arsasilene structures (CH3) HSiE (CH3)(E: N, P, or As) via concerted 1, 3-dipolar cycloaddition of nitrous oxide: A DFT study. Comp. Theor. Chem. 2018, 1134, 47-53. DOI: 10.1016/j.comptc.2018.05.003
  • [100] Plumet, J.; 1, 3-Dipolar Cycloaddition Reactions of Nitrile Oxides under “Non‐Conventional” Conditions: Green Solvents, Irradiation, and Continuous Flow. Chem. Plus Chem. 2020, 85, 2252-2271. DOI: https://doi.org/10.1002/cplu.202000448
  • [101] a) Zardoost, M.R.; Siadati, S.A.; A Theoretical Study of Substitution Effect on an Electrocyclization Reaction. Comb. Chem. High Throughput Screen. 2013, 16, 408- 412; DOI: 10.2174/1386207311316050006 b) Yildiz, C.B.; Reactivity of silagermenylidene toward nitrous oxide: a preliminary DFT study. J Mol. Model. 2018, 24, 1-11. DOI: 10.1007/s00894-017-3554-y
  • [102] Siadati, S.A.; Zardoost, M.R.; Emadi Toosse, M.R.; A Theoretical Study on Cycloaddition of 2-Ethyny1-2, 3-Dihdrofurane and Phenyl Azide. J. Phys. Theor. Chem. 2010, 7, 13-17.
  • [103] Chakrabarty, S.; Chatterjee, I.; Wibbeling, B.; Daniliuc, C.G.; Studer, A.; Stereospecific formal [3+2] dipolar cycloaddition of cyclopropanes with nitrosoarenes: an approach to isoxazolidines. Ang. Chem. Int. Ed. 2014, 53, 5964-5968. DOI: 10.1002/anie.201400885
  • [104] Zardoost, M.R.; Siadati, S.A.; Davoodi, H.; A theoretical study of 1, 3-dipolar cycloaddition of BNO with Acryl-nitrile. Iran. J. Org. Chem. 2011, 3, 577-580.
  • [105] Zardoost, M.R.; Siadati, S.A.; Boodaghi, A.; A theoretical study on cycloaddition of norbornene and phenyl azide. Iran. J. Org. Chem. 2010, 2, 377-381.
  • [106] Zardoost, M.R.; Siadati, S.A.; Oghani, B.G.; A DFT study on the 1, 3-dipolar cycloaddition of benzonitrile oxide and N-ethylmaleimide. Prog. React. Kinet. Mech. 2013, 38, 316-322. DOI: 10.3184/146867813X13708865885403
  • [107] Zardoost, M.R.; Siadati, S.A.; A DFT study on the cycloaddition of dimethyl acetylenedicarboxylate and 3, 4-dihydroisoquinoline-N-oxide. Prog. React. Kinet. Mech. 2012, 37, 436-441. DOI: 10.3184/146867812X13442655909162
  • [108] Bekhradnia, A.R.; Arshadi, S.; Siadati, S.A.; 1, 3-Dipolar cycloaddition between substituted phenyl azide and 2, 3-dihydrofuran. Chem. Pap. 2014, 68(2), 283-290. DOI: 10.2478/s11696-013-0440-7
  • [109] Zardoost, M.R.; Siadati, S.A.; A DFT study on the effect of functional groups on the formation kinetics of 1, 2, 3-triazolo-1, 4-benzoxazine via intramolecular 1, 3-dipolar cycloaddition. Prog. React. Kinet. Mech. 2013, 38, 191-196. DOI: 10.3184/146867813X13632857557653
  • [110] Siadati, S.A.; Nami, N.; Zardoost, M.R.; A DFT Study of Solvent Effects on the Cycloaddition of Norbornadiene and 3, 4-Dihydroisoquinoline-N-Oxide. Prog. React. Kinet. Mech. 2011, 36, 252-258. DOI: 10.3184/146867811X13095326582455
  • [111] Kula, K.; Dobosz, J.; Jasiński, R.; Kącka-Zych, A.; Łapczuk-Krygier, A.; Mirosław, B.; Demchuk, O.M.; [3+2] Cycloaddition of diaryldiazomethanes with (E)-3, 3, 3-trichloro 1-nitroprop-1-ene: An experimental, theoretical and structural study. J. Mol. Struct. 2020, 1203, 127473. DOI: 10.1016/j.molstruc.2019.127473
  • [112] Soleymani, M.; DFT study of double 1, 3-dipolar cycloaddition of nitrilimines with allenoates. Monatsh. fur Chem. 2018, 149, 2183-2193. DOI: 10.1007/s00706-018-2311-y
  • [113] Umar, A.R.; Tia, R.; Adei, E.; The 1, 3-dipolar cycloaddition of adamantine-derived nitrones with maleimides: A computational study. Comput. Theor. Chem. 2021, 1195, 113099. DOI: 10.1016/j.comptc.2020.113099
  • [114] Benchouk, W.; Mekelleche, S.M.; Silvi, B.; Aurell, M.J.; Domingo, L.R.; Understanding the kinetic solvent effects on the 1, 3-dipolar cycloaddition of benzonitrile N‐oxide: a DFT study. J Phys. Org. Chem. 2011, 24, 611-618. DOI: 10.1002/poc.1858
  • [115] Goehry, C.; Besora, M.; Maseras, F.; Computational study on the mechanism of the acceleration of 1, 3-dipolar cycloaddition inside cucurbit [6] uril. ACS Catal. 2015, 5, 2445-2451. DOI: 10.1021/cs501703t
  • [116] Wahl, F.; Wörth, J.; Prinzbach, H.; The Pagodane Route to Dodecahedranes: An Improved Approach to the C20H20 Parent Framework; Partial and Total Functionalizations—Does C20‐Fullerene Exist?. Angew. Chem., Int. Ed. Engl. 1993, 32, 1722-1726. DOI: 10.1002/anie.199317221
  • [117] Ke, X.Z.; Zhu, Z.Y.; Zhang, F.S.; Wang, F.; Wang, Z.X.; Molecular dynamics simulation of C20 fullerene. Chem. Phys. Let. 1999, 313, 40-44. DOI: 10.1016/S0009-2614(99)01055-6
  • [118] Taylor, P.R.; Bylaska, E.; Weare, J.H.; Kawai, R.; C20: fullerene, bowl or ring? New results from coupled-cluster calculations. Chem. Phys. Let. 1995, 235, 558-563. DOI:10.1016/0009-2614(95)00161-V
  • [119] Prinzbach, H.; Weiler, A.; Landenberger, P.; Wahl, F.; Wörth, J.; Scott, L.T.; Olevano, D.; Gas-phase production and photoelectron spectroscopy of the smallest fullerene, C20. Nature 2000, 407(6800), 60-63. DOI: 10.1038/35024037
  • [120] Podlivaev, A.I.; Openov, L.A.; Formation of a “cluster molecule”(C20) 2 and its thermal stability. Phys. Solid State 2006, 48, 2226-2232. DOI: 10.1134/S1063783406110345
  • [121] Davydov, I.V.; Podlivaev, A.I.; Openov, L.A.; Anomalous thermal stability of metastable C20 fullerene. Phys. Solid State 2005, 47, 778-784. DOI: 10.1134/1.1913997
  • [122] Openov, L.A.; Davydov, I.V.; Podlivaev, A.I.; Stability of C20 fullerene chains. JETP Lett. 2007, 85, 339-343. DOI: 10.1134/S0021364007070089
  • [123] Katin, K.P.; Podlivaev, A.I.; Dynamic characteristics of the low-temperature decomposition of the C20 fullerene. Phys. Solid State 2010, 52, 436-438. DOI: 10.1134/S1063783410020356
  • [124] Choi, C.H.; Lee, H.I.; Theoretical study of C20 fullerene dimerization: a facile [2+2] cycloaddition. Chem. phys. let. 2002, 359, 446-452. DOI: 10.1016/S0009-2614(02)00735-2
  • [125] Saito, M.; Miyamoto, Y.; Okada, S.; Theoretical identification of C 20 fullerene and prediction of electronic properties of its solid phases. Mol. Cryst. Liq. Cryst. 2002, 386, 97-101. DOI: 10.1080/713738836
  • [126] Han, M.J.; Kim, G.; Lee, J.I.; Yu, J.; Competition between structural distortion and magnetic moment formation in fullerene C20. J chem. phys. 2009, 130, 184107. DOI: 10.1063/1.3119485
  • [127] Du, A.J.; Pan, Z.Y.; Ho, Y.K.; Huang, Z.; Zhang, Z.X.; Memory effect in the deposition of C 20 fullerenes on a diamond surface. Phys. Rev. B 2002, 66, 035405. DOI: 10.1103/PhysRevB.66.035405
  • [128] Sahoo, R.K.; Chakraborty, B.; Sahu, S.; Reversible hydrogen storage on alkali metal (Li and Na) decorated C20 fullerene: A density functional study. Int. J. Hydrog. Energy. 2021, 46, 40251-40261. DOI: 10.1016/j.ijhydene.2021.09.219
  • [129] Tahir, H.; Kosar, N.; Ayub, K.; Mahmood, T.; Outstanding NLO response of thermodynamically stable single and multiple alkaline earth metals doped C20 fullerene. J Mol. Liq. 2020, 305, 112875. DOI: 10.1016/j.molliq.2020.112875
  • [130] Raftani, M.; Abram, T.; Loued, W.; Kacimi, R.; Azaid, A.; Alimi, K.; Bouachrine, M.; The optoelectronic properties of π-conjugated organic molecules based on terphenyl and pyrrole for BHJ solar cells: DFT/TD-DFT theoretical study. Curr. Chem. Lett. 2021, 10, 489-502. DOI: 10.5267/j.ccl.2021.4.002
  • [131] Baei, M.T.; First‐Principles Study of NO2 Adsorption on C20 Fullerene. Heteroatom Chem. 2013, 24, 516-523. DOI: 10.1002/hc.21128
  • [132] Baei, M.T.; Soltani, A.; Torabi, P.; Hosseini, F.; Formation and electronic structure of C20 fullerene transition metal clusters. Monatsh. fur Chem. 2014, 145, 1401-1405. DOI: 10.1007/s00706-014-1218-5
  • [133] Siadati, S.A.; Amini-Fazl, M.S.; Babanezhad, E.; The possibility of sensing and inactivating the hazardous air pollutant species via adsorption and their [2+3] cycloaddition reactions with C20 fullerene. Sen. Actuat. B: Chem. 2016, 237, 591-596. DOI: 10.1016/j.snb.2016.06.125
  • [134] Pakravan, P.; Siadati, S.A.; The possibility of using C20 fullerene and graphene as semiconductor segments for detection, and destruction of cyanogen-chloride chemical agent. J Mol. Graph. Model. 2017, 75, 80-84. DOI: 10.1016/j.jmgm.2016.12.001
  • [135] Siadati, S.A.; Vessally, E.; Hosseinian, A.; Edjlali, L.; Possibility of sensing, adsorbing, and destructing the Tabun-2D-skeletal (Tabun nerve agent) by C20 fullerene and its boron and nitrogen doped derivatives. Syn. Met. 2016, 220, 606-611. DOI: 10.1016/j.synthmet.2016.08.003
  • [136] Vessally, E.; Siadati, S.A.; Hosseinian, A.; Edjlali, L.; Selective sensing of ozone and the chemically active gaseous species of the troposphere by using the C20 fullerene and graphene segment. Talanta 2017, 162, 505-510. DOI: 10.1016/j.talanta.2016.10.010
  • [137] Siadati, S.A.; Rezazadeh, S.; Switching behavior of an actuator containing germanium, silicon-decorated and normal C20 fullerene. Chem. Rev. Lett. 2018, 1, 77-81. DOI: 10.22034/CRL.2018.85211
  • [138] a) Demiray, F.; DFT study for Structural and Electronic Properties of N2O3 Adsorption onto C20 Fullerene. Europ. Phys. J D 2020, 74, 1-8; DOI: 10.1140/epjd/e2020-10141- 5 b) Babanezhad, E.; Beheshti, A. The possibility of selective sensing of the straight-chain alcohols (including methanol to n-pentanol) using the C20 fullerene and C18NB nano cage. Chem. Rev. Lett. 2018, 1, 82-88. DOI: 10.22034/CRL.2018.85212
  • [139] Harismah, K.; Ozkendir, O.M.; Mirzaei, M.; Lithium adsorption at the C20 fullerene-like cage: DFT approach. Adv. J. Sci. Eng. 2020, 1, 74-79. DOI: 10.22034/AJSE2013074
  • [140] a) Rad, A.S.; Ayub, K.; Substitutional doping of zirconium-, molybdenum-, ruthenium-, and palladium: an effective method to improve nonlinear optical and electronic property of C20 fullerene. Comp. Theo. Chem. 2017, 1121, 68-75; DOI: 10.1016/j.comptc.2017.10.015 b) Rad, A.S.; Aghaei, S.M.; Aali, E.; Peyravi, M.; Study on the electronic structure of Cr-and Ni-doped fullerenes upon adsorption of adenine: a comprehensive DFT calculation. Diam. Relat. Mater. 2017, 77, 116-121. DOI: 10.1016/j.diamond.2017.06.013
  • [141] a) Kaur, M.; Sawhney, R.S.; Engles, D.; Proliferating miller indices of C20 fullerene device under DFT-NEGF regime. J Mol. Graph. Model. 2017, 71, 184-191. DOI: 10.1016/j.jmgm.2016.10.017
  • [142] Pakravan, P. The Possibility of Selective Adsorption and Sensing of the Noble Gaseous Species by the C20 Fullerene, the Graphene Sheets, and the N4B4 Cluster. J. Phys. Theo. Chem. 2017, 14, 15-24.
  • [143] Motlagh, N.M.; Rouhani, M.; Mirjafary, Z.; Aminated C20 fullerene as a promising nanosensor for detection of A-234 nerve agent. Comp. Theo. Chem. 2020, 1186, 112907. DOI: 10.1016/j.comptc.2020.112907
  • [144] Harismah, K.; Ozkendir, O.M.; Mirzaei, M.; Lithium adsorption at the C20 fullerene-like cage: DFT approach. Adv. J Sci. Eng. 2020, 1, 74-79.
  • [145] Molani, F.; Askari, M.; A DFT study on the structural and electronic properties of small toxic gases on B-and Al-doped C20 fullerene. J. Struc Chemistry 2017, 58, 657-666. DOI: 10.22034/AJSE2013074
  • [146] Baei, M.T.; Benzene Adsorption on C24, Si@ C24, Si-Doped C24, and C20 Fullerenes. Rus. J Phys. Chem. A 2017, 91(13), 2530-2538. DOI: 10.1134/S0036024417130143
  • [147] Hosseinian, A.; Asadi, Z.; Edjlali, L.; Bekhradnia, A.; Vessally, E.; NO2 sensing properties of a borazine doped nanographene: a DFT study. Comp. Theo. Chem. 2017, 1106, 36-42. DOI: 10.1016/j.comptc.2017.03.004
  • [148] Siadati, S.A.; Nami, N.; Investigation of the possibility of functionalization of C20 fullerene by benzene via Diels-Alder reaction. Phys. E: Low-Dimens. Syst. Nanostructures. 2016, 84, 55-59. DOI: 10.1016/j.physe.2016.05.041
  • [149] Soleymani, M.; Khavidaki, H.D.; Inactivation possibility of pyrene by C20 fullerene via cycloaddition reactions: A theoretical study. Comput. Theor. Chem. 2017, 1112, 37- 45. DOI: 10.1016/j.comptc.2017.04.014
  • [150] Soleymani, M.; Theoretical study of the possibility of functionalization of C20 fullerene with the simplest ketene CH2CO. J Struct. Chem. 2019, 60, 524-535. DOI: 10.1134/S0022476619040036
  • [151] Pakravan, P.; Siadati, S.A.; A [1+2] cycloaddition instead of usual [2+3] cycloaddition between the B12N12 cluster and methyl azide: Potential energy surface calculations and Born-Oppenheimer molecular dynamics simulations. Prog. React. Kinet. Mech. 2020, 45, 1-10. DOI: 10.1177/1468678319900581
  • [152] Asghari, S.; Gouran, A. A.; Farmanzadeh, D.; Abdollahi, T.; Investigating the reaction pathways of chemical functionalization of C20 fullerene by nitrile oxide and azide; A computational study. J Theor. Comput. Chem. 2018, 17, 1850003. DOI: 10.1142/S0219633618500037
Uwagi
Błąd w numeracji bibliografii - dwukrotnie nr 83.
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-da56ce5e-0915-44a0-8726-1a3ec662cbf2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.