PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Deciphering Customer Satisfaction: A Machine Learning-Oriented Method Using Agglomerative Clustering for Predictive Modeling and Feature Selection

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In contemporary enterprises, customer satisfaction analysis has become a critical area of concentration. Being able to understand and predict customer satisfaction is becoming more and more important as companies try to develop and launch new products. Leveraging customer data intelligently and employing robust data analytics techniques are essential for meeting this imperative. With this objective in mind, the study proposes a machine learning-based approach to analyze and discern the variables influencing customer satisfaction. Specifically, the study utilizes agglomerative clustering for data segmentation and feature identification, followed by a Random Forest Classifier as machine learning (ML) model for prediction. Performance metrics such as accuracy, recall, precision and F1-score are employed for model evaluation, ensuring robustness and reliability in the predictive process. Furthermore, it aims to predict the impact of enhancing specific product attributes on customer satisfaction. To provide a tangible demonstration of the proposed methodology, a comprehensive case study is conducted. By systematically integrating clustering techniques into the feature selection and modeling process, this framework furnishes a structured methodology for data-driven decision-making and predictive analytics. This holistic approach not only enriches the comprehension of intricate datasets but also facilitates the development of resilient predictive models characterized by enhanced accuracy and interpretability. By segmenting customers based on their responses, we discerned specific areas of satisfaction and dissatisfaction, providing actionable insights for targeted strategies aimed at improving overall satisfaction. The insights and customer clustering derived from this study can guide these targeted strategies to enhance customer satisfaction and inform future product development initiatives.
Wydawca
Rocznik
Tom
Strony
60--70
Opis fizyczny
Bibliogr. 45 poz., rys., tab.
Twórcy
  • System Analysis and Modeling and Decision Support Laboratory (LAMSAD) National School of Applied Sciences (ENSA), Berrechid Hassan First University, Morroco
  • System Analysis and Modeling and Decision Support Laboratory (LAMSAD) National School of Applied Sciences (ENSA), Berrechid Hassan First University, Morroco
  • Physical Geography and Ecosystem Science Lund University, Sweden
Bibliografia
  • [1] A.H. Kracklauer, D.Q. Mills, D. Seifert, Customer Management as the Origin of Collaborative Customer Relationship Management, in Collaborative Customer Relationship Management, A. H. Kracklauer, D.Q. Mills, et D. Seifert, Éd., Berlin, Heidelberg: Springer Berlin Heidelberg, 2004, pp. 3–6. doi: 10.1007/978-3-540-24710-4_1.
  • [2] E.W. Ngai, L. Xiu, D.C. Chau, Application of data mining techniques in customer relationship management: A literature review and classification, Expert systems with applications, vol. 36, no 2, pp. 2592–2602, 2009.
  • [3] E.Y. Lee, S. Yoo, D.W. Lee, Does the Variance of Customer Satisfaction Matter for Firm Performance? Asia Marketing Journal, vol. 18, no 4, p. 3, 2017.
  • [4] B.A. Tama, Data mining for predicting customer satisfaction in fast-food restaurant, Journal of Theoretical & Applied Information Technology, vol. 75, no 1, 2015, Consulté le: 26 mai 2024. [En ligne]. Disponible sur: https://www.jatit.org/volumes/Vol75No1/3Vol75No1.pdf.
  • [5] R.D. Polding, M. Eizaguirre Dieguez, An Investigation into the Effectiveness of Big Data in Organizations, the Use of Customer Data, and the Ethical Implications of the Data Economy, in 2021 International Symposium on Electrical, Electronics and Information Engineering, Seoul Republic of Korea: ACM, févr. 2021, pp. 599–607. doi: 10.1145/3459104.3459201.
  • [6] H. Li, Y. Liu, C.-W. Tan, F. Hu, Comprehending customer satisfaction with hotels: Data analysis of consumer-generated reviews, International Journal of Contemporary Hospitality Management, vol. 32, no 5, pp. 1713–1735, 2020.
  • [7] Y. Zhao, X. Xu, M. Wang, Predicting overall customer satisfaction: Big data evidence from hotel online textual reviews, International Journal of Hospitality Management, vol. 76, pp. 111–121, 2019.
  • [8] M.M.H. Goode, F. Davies, L. Moutinho, A. Jamal, Determining Customer Satisfaction From Mobile Phones: A Neural Network Approach, Journal of Marketing Management, vol. 21, no 7-8, pp. 755–778, août 2005, doi: 10.1362/026725705774538381.
  • [9] G. Ming, Application research of customer big data analysis for online shop based on smart cloud platform tools, in 2022 IEEE 2nd International Conference on Power, Electronics and Computer Applications (ICPECA), IEEE, 2022, pp. 1142–1145. Consulté le: 26 mai 2024. [En ligne]. Disponible sur: https://ieeexplore.ieee.org/abstract/document/9719088/.
  • [10] S.B. Abkenar, M.H. Kashani, E. Mahdipour, S.M. Jameii, Big data analytics meets social media: A systematic review of techniques, open issues, and future directions, Telematics and informatics, vol. 57, p. 101517, 2021.
  • [11] S. Angelopoulos, M. Brown, D. McAuley, Y. Merali, R. Mortier, D. Price, Stewardship of personal data on social networking sites, International Journal of Information Management, vol. 56, p. 102208, 2021.
  • [12] A. Karimzadeh, A. Zakery, M. Mohammadi, A. Yavari, An explainable machine learning-based approach for analyzing customers’ online data to identify the importance of product attributes. arXiv, 3 février 2024. Consulté le: 26 mai 2024. [En ligne]. Disponible sur: http://arxiv.org/abs/2402.05949.
  • [13] Y. Li, Y. Dong, Y. Wang, N. Zhang, Product design opportunity identification through mining the critical minority of customer online reviews, Electron Commer Res, févr. 2023, doi: 10.1007/s10660-023-09683-8.
  • [14] J. Wang, J.-Y. Lai, Y.-H. Lin, Social media analytics for mining customer complaints to explore product opportunities, Computers & Industrial Engineering, vol. 178, p. 109104, avr. 2023, doi: 10.1016/j.cie.2023.109104.
  • [15] H. Bhimani, A.-L. Mention, P.-J. Barlatier, Social media and innovation: A systematic literature review and future research directions, Technological Forecasting and Social Change, vol. 144, pp. 251–269, juill. 2019, doi: 10.1016/j.techfore.2018.10.007.
  • [16] P. de Camargo Fiorini, B.M. Roman Pais Seles, C.J. Chiappetta Jabbour, E. Barberio Mariano, A.B.L. de Sousa Jabbour, Management theory and big data literature: From a review to a research agenda, International Journal of Information Management, vol. 43, pp. 112–129, déc. 2018, doi: 10.1016/j.ijinfomgt.2018.07.005.
  • [17] S. Çalı, A. Baykasoğlu, A Bayesian based approach for analyzing customer’s online sales data to identify weights of product attributes, Expert Systems with Applications, vol. 210, p. 118440, déc. 2022, doi: 10.1016/j.eswa.2022.118440.
  • [18] H. Kalro, M. Joshipura, Product attributes and benefits: integrated framework and research agenda, Marketing Intelligence & Planning, vol. 41, no 4, pp. 409–426, janv. 2023, doi: 10.1108/MIP-09-2022-0402.
  • [19] T. Briard, C. Jean, A. Aoussat, P. Véron, Challenges for data-driven design in early physical product design: A scientific and industrial perspective, Computers in Industry, vol. 145, p. 103814, févr. 2023, doi: 10.1016/j.compind.2022.103814.
  • [20] N. Rezki, M. Mansouri, Improving supply chain risk assessment with artificial neural network predictions, AL, vol. 10, no 04, p. 645–658, déc. 2023, doi: 10.22306/al. v10i4.444.
  • [21] J.-W. Bi, Y. Liu, Z.-P. Fan, E. Cambria, Modelling customer satisfaction from online reviews using ensemble neural network and effect-based Kano model, International Journal of Production Research, vol. 57, no 22, pp. 7068–7088, nov. 2019, doi: 10.1080/00207543.2019.1574989.
  • [22] T. Yang, Y. Dang, J. Wu, How to prioritize perceived quality attributes from consumers’ perspective ? Analysis through social media data, Electron Commer Res, janv. 2023, doi: 10.1007/s10660-022-09652-7.
  • [23] A. Haleem, M. Javaid, M. Asim Qadri, R. Pratap Singh, R. Suman, Artificial intelligence (AI) applications for marketing: A literature-based study, International Journal of Intelligent Networks, vol. 3, pp. 119–132, 2022, doi: 10.1016/j.ijin.2022.08.005.
  • [24] S. Choudhary, N. Kaushik, B. Sivathanu, N.P. Rana, Assessing Factors Influencing Customers’ Adoption of AIBased Voice Assistants, Journal of Computer Information Systems, pp. 1–18, févr. 2024, doi: 10.1080/08874417.2024.2312858.
  • [25] D.E. Bock, J.S. Wolter, O.C. Ferrell, Artificial intelligence: disrupting what we know about services, Journal of Services Marketing, vol. 34, no 3, pp. 317–334, janv. 2020, doi: 10.1108/JSM-01-2019-0047.
  • [26] N. Ameen, A. Tarhini, A. Reppel, A. Anand, Customer experiences in the age of artificial intelligence, Computers in Human Behavior, vol. 114, p. 106548, janv. 2021, doi: 10.1016/j.chb.2020.106548.
  • [27] Y.-C. Wang, M. Uysal, Artificial intelligence-assisted mindfulness in tourism, hospitality, and events, International Journal of Contemporary Hospitality Management, vol. 36, no 4, pp. 1262–1278, 2024.
  • [28] N. Syam, A. Sharma,Waiting for a sales renaissance in the fourth industrial revolution: Machine learning and artificial intelligence in sales research and practice, Industrial Marketing Management, vol. 69, pp. 135–146, févr. 2018, doi: 10.1016/j.indmarman.2017.12.019.
  • [29] J. (Justin) Li, M.A. Bonn, B.H. Ye, Hotel employee’s artificial intelligence and robotics awareness and its impact on turnover intention: The moderating roles of perceived organizational support and competitive psychological climate, Tourism Management, vol. 73, pp. 172–181, août 2019, doi: 10.1016/j.tourman.2019.02.006.
  • [30] J. van Doorn et al., Domo Arigato Mr. Roboto: Emergence of Automated Social Presence in Organizational Frontlines and Customers’ Service Experiences, Journal of Service Research, vol. 20, no 1, p. 43–58, févr. 2017, doi: 10.1177/1094670516679272.
  • [31] P. Cunningham, S.J. Delany, k-Nearest Neighbour Classifiers – A Tutorial, ACM Comput. Surv., vol. 54, no 6, pp. 1–25, juill. 2022, doi: 10.1145/3459665.
  • [32] J.R. Quinlan, Induction of decision trees, Mach Learn, vol. 1, no 1, pp. 81–106, mars 1986, doi: 10.1007/BF00116251.
  • [33] A.K. Jain, J. Mao, K.M. Mohiuddin, Artificial neural networks: A tutorial, Computer, vol. 29, no 3, pp. 31–44, 1996.
  • [34] N. Dong, H. Huang, L. Zheng, Support vector machine in crash prediction at the level of traffic analysis zones: assessing the spatial proximity effects, Accident Analysis & Prevention, vol. 82, pp. 192–198, 2015.
  • [35] H. Li, X. B. Bruce, G. Li, H. Gao,Restaurant survival prediction using customer-generated content: An aspect-based sentiment analysis of online reviews, Tourism Management, vol. 96, p. 104707, 2023.
  • [36] C.-J. Liu, T.-S. Huang, P.-T. Ho, J.-C. Huang, C.-T. Hsieh, Machine learning-based e-commerce platform repurchase customer prediction model, Plos one, vol. 15, no 12, p. e0243105, 2020.
  • [37] G. Dash, K. Kiefer, J. Paul, Marketing-to-Millennials: Marketing 4.0, customer satisfaction and purchase intention, Journal of Business Research, vol. 122, pp. 608–620, janv. 2021, doi: 10.1016/j.jbusres.2020.10.016.
  • [38] Y. Wang, X. Lu, Y. Tan, Impact of product attributes on customer satisfaction: An analysis of online reviews for washing machines, Electronic Commerce Research and Applications, vol. 29, pp. 1–11, mai 2018, doi: 10.1016/j.elerap.2018.03.003.
  • [39] T. Hou, B. Yannou, Y. Leroy, E. Poirson, Mining customer product reviews for product development: A summarization process, Expert Systems with Applications, vol. 132, pp. 141–150, oct. 2019, doi: 10.1016/j.eswa.2019.04.069.
  • [40] S. Park, H. Kim, Extracting product design guidance from online reviews: An explainable neural network-based approach, Expert Systems with Applications, vol. 236, p. 121357, févr. 2024, doi: 10.1016/j.eswa.2023.121357.
  • [41] H.-S. Kim, Y. Noh, Elicitation of design factors through big data analysis of online customer reviews for washing machines, J Mech Sci Technol, vol. 33, no 6, pp. 2785–2795, juin 2019, doi: 10.1007/s12206-019-0525-5.
  • [42] Y. Du, D. Liu, J.A. Morente-Molinera, E. Herrera-Viedma, A data-driven method for user satisfaction evaluation of smart and connected products, Expert Systems with Applications, vol. 210, p. 118392, déc. 2022, doi: 10.1016/j.eswa.2022.118392.
  • [43] Md. N. Imtiaz, Md. K. Ben Islam, Identifying Significance of Product Features on Customer Satisfaction Recognizing Public Sentiment Polarity: Analysis of Smart Phone Industry Using Machine-Learning Approaches, Applied Artificial Intelligence, vol. 34, no 11, pp. 832–848, sept. 2020, doi: 10.1080/08839514.2020.1787676.
  • [44] D. Suryadi, H.M. Kim, A Data-Driven Methodology to Construct Customer Choice Sets Using Online Data and Customer Reviews, Journal of Mechanical Design, vol. 141, no 11, p. 111103, nov. 2019, doi: 10.1115/1.4044198.
  • [45] J. Joung, H. Kim, Interpretable machine learning-based approach for customer segmentation for new product development from online product reviews, International Journal of Information Management, vol. 70, p. 102641, juin 2023, doi: 10.1016/j.ijinfomgt.2023.102641.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki i promocja sportu (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-da4c377d-a58c-45e4-97d2-0a95ac789aae
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.