PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Dry ice compaction in piston extrusion process

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article presents the results of research on the effect of extrusion tube geometry on the axial force being the key parameter of the dry ice piston extrusion process. The tests were carried out with the experimental set-up based on a cylindrical extrusion tube used alone and supplemented with reducer (orifice). The focus of the experiments was to determine the effect of compression tube reducer on the value of the force of resistance FOP in the dry ice compression process. Its value can subsequently be used as the basis for establishing guidelines for designing and building machines for compression and pelletizing of dry ice.
Rocznik
Strony
313--316
Opis fizyczny
Bibliogr. 20 poz., rys., wykr.
Twórcy
autor
  • Chair of Basics of Machine Design, Faculty of Machines and Transport, Poznan University of Technology, ul. Piotrowo 3, 60-965 Poznań, Poland
autor
  • Chair of Basics of Machine Design, Faculty of Machines and Transport, Poznan University of Technology, ul. Piotrowo 3, 60-965 Poznań, Poland
autor
  • Chair of Basics of Machine Design, Faculty of Machines and Transport, Poznan University of Technology, ul. Piotrowo 3, 60-965 Poznań, Poland
  • Chair of Basics of Machine Design, Faculty of Machines and Transport, Poznan University of Technology, ul. Piotrowo 3, 60-965 Poznań, Poland
Bibliografia
  • 1. Chen L., Zhang X. (2014), A review study of solid-gas sublimation flow refrigeration: From basic mechanism to alications, International Journal od Refrigeration, 40, 61-83.
  • 2. Dong S., Song B., Hansz B., Liao H.L., Coddet C., (2012) Modeling of dry ice blasting and its alication in thermal spray, Material Research Innovations, 16, 61-66.
  • 3. Drzymała Z. (1988), Basics of Compaction Engineering of Material Compaction (in polish), PWN, Warsaw.
  • 4. Górecki J., Malujda I., Talaśka K. (2013), Research on Densification of solid carbon dioxide, Journal of Mechanical and Transportation Engineering, 65(4), 5-12.
  • 5. Górecki J., Malujda I., Talaśka K. (2016), Investigation of internal friction of agglomerated dry ice, Procedia Engineering, 136, 275-279.
  • 6. Górecki J., Malujda I., Talaśka K., Kukla M., Tarkowski P. (2016), Influence of the Value of Limit Densification Stress on the Quality of the Pellets During the Agglomeration Process of CO2, Procedia Engineering, 136, 269-274.
  • 7. Li M., Liu W., Qing X., Ye Y., Liu L., Tang Z. Wang H., Dong Y., Zhang H., (2016), Feasibility Study of a New Approach to Removal of Paint Coatings In Remanufacturing, Journal of Materials Processing Technology, 234, 102-112.
  • 8. Liu Y., Calvert G., Hare C., Ghadiri M., Matusaka S. (2012), Size measurement of dry ice particles produced form liquid carbon dioxide, Journal of Aerosol Science, 48, 1-9.
  • 9. Liu Y., Hirama D., Matusaka S. (2012), Particle removal proces during alication of impinging dry ice jet, Powder Technology, 2017, 607-613.
  • 10. Liu Y., Maruyama H., Matsusaka S. (2010), Agglomeration process of dry ice particles produced by expanding liquid carbon dioxide, Advanced Powder Technology, 21, 652-657.
  • 11. Malczewski J. (1992), Mechanic of bulk materials, unit operations (in polish), Warsaw, OWPW.
  • 12. Masa V., Kuba P. (2016) Efficient use of compressed air for dry ice blasting, Journal of Cleaner Production, 111, 76-84.
  • 13. Mazzoldi A., Hill T., Colls J. (2008), CO2 transportation for carbon capture and storage: Sublimation of carbon dioxide from a dry ice bank, International Journal of Greenhouse Gas Control, 2, 210-218.
  • 14. Otto C., Zahn S., Rost F., Zahan P., Jaros D., Rohm H., (2011) Physical Methods of cleaning and Disinfection of Surfaces, Food Engineering Review, 3, 171-188.
  • 15. Patent application No. P.419432, Piston assembly designed for dry ice snow compression, Polish Patent Office, Poland.
  • 16. Spur G., Uhlmann E., Elbing F. (1999), Dry-ice blasting for cleaning: process, optimization and alication, Wear, 233–235, 402–411.
  • 17. Uhlmann E., Kretzschmar M., Elbing F., Mihotovic V. (2010), Deburring with CO2 Snow Blasting, In: Aurich J., Dornfeld D. (eds) Burrs - Analysis, Control and Removal. Springer, Berlin, Heidelberg.
  • 18. Vansant J., (2013), Carbon dioxide emission and merchant market in the European union, In Aresta M. (eds) Carbon Dioxide Recovery and Utilization, Springer Science & Business Media.
  • 19. Witte A., Bobal M., David R., Blattler B., Schoder D. Rossmanith P. (2017), Investigation of the potential of dry ice blasting for cleaning and disinfection in the food production environment, LWT - Food Science and Technology, 75, 735-741.
  • 20. Yamaguchi H., Niu X., Sekimoto K., Neksa P. (2011), Investigation of dry ice blockage in an ultra-low temperature cascade refrigeration system using CO2 as a working fluid, International Journal of Refrigeration, 34, 466-475.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-da448842-ecb9-4fe1-872b-f9c0ae50004b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.