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Abstract 

The mechanical operations performed by the computer numerical control machine tools feed system are 

more prone to failure, and its not conducive to the accuracy and stability of computer numerical control machine 

tools. As a result, this study proposes a fault diagnosis model that combines a digital twin with a multiscale 

parallel one-dimensional convolutional neural network. A digital twin model of the table feed system was first 

constructed and simulation experiments of various working conditions were conducted to obtain the missing 

fault data in the actual physical space. On this basis, the study utilizes the acquired signals to train the proposed 

migration model for diagnosis. The model extracts different types of fault features from the analog and real 

signals, respectively, through an intermediate multi-scale convolution algorithm. In addition, the model reduces 

the distributional disparities between the real and analog signals by using the Wasserstein distance as a regular 

term to impose constraints on the machine learning process. The study conducted simulation experiments, and 

the results indicated that the fault periods of the simulated and actual signals of bearing outer ring faults were 

0.198s and 0.196s, respectively, with a relative error of only 1.02%. The average fault periods of the actual and 

simulated signals of the bearing inner ring faults were 0.199s and 0.197s, respectively, with a relative deviation 

of only 0.48%. In addition, the classification accuracy of the proposed model can be maintained above 95%. 

Thus, the proposed model has good practical value. 
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1. INTRODUCTION 

 

Modern digital manufacturing, which primarily 

merges computer numerical control systems with 

manual machine tools, depends heavily on computer 

numerical control machine tools (CNCMT) [1]. The 

feed system in CNCMT is the direct unit involved in 

CNCMT cutting machining, and its stability is 

closely related to the productivity of the whole 

CNCMT [2]. During the machining process, the feed 

system needs to change direction and speed 

frequently, and often suffers from large vibration and 

shock, so its failure is frequent. Failure of the feed 

system seriously affects the efficiency, accuracy and 

load responsiveness of the CNCMT [3]. Therefore, 

in order to ensure the machining stability of 

CNCMT, fast and accurate Fault diagnosis (FD) of 

table feed system (TFS) has become an urgent 

problem. The conventional typical approach for the 

FD technique of TFS relies on manual examination, 

which has several drawbacks including high cost, 

poor diagnostic efficacy, and labor- and time-

intensiveness [4]. Intelligent FD techniques have 

been gaining popularity recently due to the quick 
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growth of computing technology like machine 

learning. Machine learning-based FD methods do 

not need to have a priori knowledge and have better 

convenience, so they are widely used in the FD of 

TFS. In addition, digital twin (DT) technology is 

newly emerging in various industries with its ability 

to create virtual copies of physical equipment, 

monitor and optimize equipment status and 

production processes, and improve the identification 

and handling of anomalies in industrial 

manufacturing [5]. As a result, to improve the fault 

detection capability of CNCMT feeding system, this 

research proposes a TFSFD method for CNCMT that 

integrates DT and machine learning. The 

innovations of this research are (1) to establish the 

DT model of CNC machining platform from two 

dimensions, physical space and digital space, for the 

common faults of CNCMT feeding system. (2) A 

migration diagnostic model based on multi-scale 

parallel 1-dimensional convolutional neural network 

(MSP-CNN) is constructed by making full use of the 

fault information in the simulated signal (S-S) as an 

effective supplement to the fault information in the 

actual signals. (3) In order to reduce the 
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distributional differences between migrated fault 

features, the MSP-CNN is further optimized by 

introducing the Wasserstein distance. This research's 

primary contribution is the clever CNCMT feeding 

system that it suggests. 

The study is broken up into four sections: the 

literature review, which covers the present status of 

research on the suggested technique, is the first 

section. The research methodology section, which 

mostly constructs the methodologies employed in 

this study, makes up the second section. The 

experimental validation of the suggested method is 

covered in the third section. The paper's outlook and 

summary are included in the final section. 
 

2. RELATED WORK 

 

The CNCMT feed system, as its core operation 

part, has been studied by many scholars on its FD 

method. Aiming at the FD problem of CNCMT 

machining platform feed system, Wang and other 

researchers proposed a new solution. To increase the 

effectiveness and precision of system FD, the study 

used CNCMT as its research object and incorporated 

important technologies such object-oriented 

knowledge acquisition, feature representation, 

modeling, and visualization. The suggested 

combination extraction technique is more precise 

and efficient than the conventional single extraction 

method, according to the experimental results [6]. To 

evaluate and monitor the operational status of the 

CNCMT, Martinova and other scholars proposed an 

FD method based on state detection for the TFS of 

the CNCMT. The method adopted a research idea 

based on multidisciplinary cross-fertilization and 

constructed a subsystem component model. The 

experiments proved that the proposed method can 

effectively detect hidden problems in the equipment 

[7]. To improve the machining accuracy of the 

machining platform, Kuo and other researchers used 

the Adaboost algorithm for the machining platform 

and proposed a new new method for chatter 

diagnosis based on time-varying rate sensor. 

Experiments proved that the method can achieve 

more than 98% accuracy [8]. Xia and other 

researchers aimed to improve the efficiency and 

accuracy of recognizing important wear parts in 

flexible manufacturing systems and proposed an 

acceleration sensor-based vibration detection 

algorithm. The proposed method utilized an artificial 

bee colony to optimize the initial weights of the LVQ 

neural network in order to improve its fault 

recognition effect. The method achieved fast and 

accurate FD of critical components in the system [9]. 

Deebak and Al-Turjman proposed a new FD new 

method based on the combination of DT and deep 

migration learning for the problems in CNCMT 

machining process. This method utilized k-type 

thermocouples with WiFi module on the smart tool 

holder to monitor the machine operating conditions 

in real time and obtain data in the cloud [10]. 

With the recent rapid development of 

information technology, DT technology-a method 

that integrates interdisciplinary linked simulation of 

multi-physical fields, multi-scale, and multi-

probability-has been ingrained in all spheres of 

existence. Wang and other researchers proposed an 

online monitoring method based on DT architecture, 

which was introduced into the interconnected system 

to improve the real-time equipment condition 

monitoring. Real-time monitoring of equipment, 

equipment efficiency evaluation, and order 

scheduling were accomplished by establishing a 

dashboard-based operation center [11]. Ren and 

other researchers proposed a new management idea 

integrating DT and machine learning for the 

management of complex equipment during its life 

cycle, aiming to improve the responsiveness, 

prediction and adaptive capability of complex 

equipment management. The proposed method 

embeds a machine learning model into the DT 

system and uses it for the preventive maintenance of 

locomotive diesel engines to make the maintenance 

decision more intelligent [12]. Duan and other 

researchers took the paddle-rotor experimental 

platform as the research object, and established a DT 

technology framework system with the goal of 

improving its visualization monitoring and 

equipment monitoring capability. The system that 

was built made use of RS-485 and other 

communication protocols that enable lower-level 

equipment to acquire and read data in real-time. The 

method's efficiency was confirmed by the testing 

results [13]. Malek and other researchers proposed 

real-time DT, which is the use of intelligent 

maintenance system to prevent the safe operation of 

oil and gas, transportation and other industries 

effectively. This method incorporated CAE 

simulation to synchronize structural design-

performance-inspection-maintenance. The study 

validated the feasibility of the LIVEDT architecture 

by using the LRT company and the pipeline system 

of the oil and gas industry as an example [14]. To 

automate the rotary body coating process, scholars 

such as Zhou and other researchers proposed a new 

idea of automatic monitoring and remote control of 

coating based on DT technology. This technology 

designed a remote-controlled automatic spraying 

production line and used multi-sensors to collect 

data, pre-process it, construct a unified data template 

and interface, and model it in 3D. The suggested 

strategy can successfully increase the coating 

spraying efficiency, according to experiments [15]. 

In summary, the FD method and DT technology 

of CNCMT feeding system gather certain scientific 

research achievements in their respective 

neighborhoods. But the current FD methods are 

often limited by poor intelligence, low precision, and 

complex operation, and there is little research on the 

use of DT technology in FD. As a result, this 

research innovation combines the two and introduces 

machine learning algorithms in order to realize 
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intelligent fault detection of the feeding system and 

add power to modern industrial manufacturing. 

 

3. TFS FAULT DIAGNOSIS METHOD FOR 

CNCMT INCORPORATING MSP-CNN-

WD AND DT TECHNIQUES 

 

The section first constructs a DT model for TFS 

based on physical and digital space, and based on 

this, a MSP-CNN-WD machine learning model is 

constructed. To minimize the distributional 

disparities between the simulated and actual signals, 

the machine learning process is subject to constraints 

imposed by the model using the Wasserstein 

distance as a regular term. 

 

3.1. DT model construction for CNC TFS based 

on physical and digital space 

DT is an emerging interdisciplinary technology, 

mainly centered on modeling and data, which is of 

great practical significance for equipment FD [16]. 

The DT model of TFS constructed by DT technology 

enables dynamic simulation to generate scarce fault 

data, which can help to solve the problem of poor 

modeling accuracy due to few fault samples [17]. 

This research addresses the common faults of 

CNCMT feeding systems and combines the key 

techniques of DT to propose a FD method for 

CNCMT feeding systems, as shown in Figure 1. The 

"table" in Figure 1 is a box line representing the 

content of each different module. In Figure 1, this 

research firstly establishes the DT model of CNC 

machining platform from two dimensions of 

physical space and digital space. To address the issue 

of the model's low diagnostic accuracy resulting 

from a lack of available fault data, a large number of 

simulated fault signals and a small number of 

genuine signals are used to train and validate the 

constructed model. 

This study constructs virtual entities in digital 

space from multiple perspectives, establishes 

mapping relationships of TFS in digital space, and 

generates actual data based on the actual working 

condition to provide sufficient training samples for 

building reliable FD models [18, 19]. First, the study 

constructs a physical model of the work feeding 

system to analyze the information of vibration, load, 

and elastic deformation generated during the motion 

process. The relationship between the table 

displacement and the servomotor rotation angle is 

shown in Equation (1). 
2

0 0 0 02

( ) ( )
( ) ( )

2
d

d x t dx t S
J B K x t K t

dtdt



+ + =  (1) 

In Equation (1), 
0J  is the equivalent rotational 

inertia and 
0B  is the equivalent damping coefficient. 

0K  is the equivalent stiffness, and ( )x t  is the 

displacement of the table. S  is the lead of the ball 

screw, ( )d t  is the rotation angle of the servo motor; 

t  represents a time variable, used to describe 

physical quantities that change over time. Among 

them, the performance of the ball screw and the 

screw support greatly affects the motion accuracy of 

the table [20]. Therefore, in this study, in order to 

grasp the performance changes of the supporting 

bearing (SupB) and ball screw, the dynamic 

simulation model of the SupB and ball screw nut 

sub-six is constructed, as shown in Figure 2. 
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Fig. 1. Fault diagnosis scheme for table feed system based on DT technology 
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In Figure 2, 
im  and 

om  are the total mass of the 

inner ring (InR) and the screw, and the total mass of 

the outer ring (OuR) and the bearing housing, 

respectively. ic  and oc  are the connection damping 

between the screw and the fixing, and the connection 

damping between the bearing housing and the bed, 

respectively. 
ik , 

0k  are the equivalent connection 

stiffness (ECS) between the screw and the fixed 

place, and the ECS between the bearing housing and 

the bed, respectively. xF , yF  are the components of 

the elastic restoring force in the x -direction and the 

components of the elastic restoring force in the y -

direction, respectively. e  is the eccentricity 

distance, t  is the time,   is the angular frequency 

of InR rotation, g  is the gravitational acceleration. 

As a result, the differential mathematical expression 

for the dynamics of the SupB is shown in Equation 

(2). 

2

2

cos

sin

i i i i i i x i

i i i i i i y i i

o o o o o o x

o o o o o o y i

m x c x k x F em t

m y c y k y F em t m g

m x c x k x F

m y c y k y F m g

 

 

 + + = − +


+ + = − + +


+ + =
 + + = +

 (2) 

The mathematical expression for the elastic 

restoring force F  in Equation (2) is shown in 

Equation (3). 

 nF K=  (3) 

In Equation (3), K  is the equivalent contact 

stiffness,   is the contact deformation (CD), and n  

is the load deflection coefficient. Among them,   is 

closely associated with the relative displacement and 

radial clearance of the InR and OuRs, and the CD at 

the i th rolling element (RolE) can be Equation (4). 

 ( ) ( )cos sini i o i i o i rx x y y c  = − + − −  (4) 

In Equation (4), 
i  is the CD at the i th RolE. 

i  

is the angular position of the i th RolE, and 
rc  is the 

radial clearance of the bearing. To quantify the 

failure situation of SupBs more clearly, two types of 

typical failures of the InR and OuRs of SupBs are 

used in this study. The expression of CD of rolling 

body (RB) i  after the introduction of faults is shown 

in Equation (5). 

( ) ( )sin cosi i o i i o i rx x y y c H  = − + − − −  (5) 

The horizontal and vertical displacements of the 

InR of the SupB and the ball screw are represented 

by the letters 
ix , 

iy  in Equation (5). The OuR of the 

SupB and the housing are displaced both 

horizontally and vertically by 0x , 0y . The depth of 

RB into the fault area is known as H . Figure 3(a) 

illustrates the change in CD between the RB and the 

OuR after they approach the fault area; Equation (6) 

provides the precise formula for this change. 
22 2

2 2 2

2 2
2 2

,8 4
4 2 4 4

,8 4
2 4 4

o o

b b b

o

o o

b

D DL L
r r r h h L

H

D D L
h r h h L

  
  − − − − − − 

   
= 

 
 − − − −   

  

 (6) 

In Equation (6), 
0D  is the diameter of the OuR 

and 
br  is the radius of the RB. L  is the overlapping 

width of the RB and the OuR, and h  is the 

overlapping height of the RB and the OuR. The 

amount of change in the CD of the RB with the InR 

after it enters the fault region is shown in Figure 3(b), 

and its specific expression is shown in Equation (7). 
22 2

2 2 2

2 2
2 2

,8 4
4 2 4 4

,8 4
2 4 4

i i

b b b

i

i i

b

D DL L
r r r h h L

H

D D L
h r h h L

  
  − − + − − − 

   
= 

 
 + − − −   

  

 (7) 

As a result, the simulation model of SupB failure 

with localized failure is constructed. 
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Fig. 3. Geometric relationship at the fault 

location of the inner and outer rings 

 

The differential Equations for the dynamics of 

the screw nut pair established in this study are shown 

in Equation (8). 

2

s s s s s s s

2

s s s s s s s s

s s s s s s

n n n n n n

n n n n n n n

n n n n n n

cos

sin

( tan ) /

( tan ) /

x s s s

y s s s

z

x

y

z

m x c x k x P e m t

m y c y k y P e m t m g

m z c z k z P T r

m x c x k x P

m y c y k y P m g

m z c z k z P T r F

 

 





 + + = −


+ + = − + −
 + + = − − 


+ + = −
 + + = −


+ + = +  −

 (8) 

 The screw mass, the screw nut's total mass, and 

the table are represented by the 
sm  and 

nm  in 

equation (8). 
sc  and 

nc  are the connection damping 

between the screw and the screw fixing, and the 

connection damping between the slider and the 

guideway. 
sk  and 

nk  are the ECS between the 

screw and the screw fixation, and the ECS between 

the slider and the guideway. 
xP ， yP ，

zP  are the 

component of contact force in x , y , z  direction. 

nF  is the frictional resistance between the slider and 

the guideway.   is the screw lead angle, T  is the 

motor torque, r  is the radius of the screw, 
se  is the 

eccentricity, and 
s  is the angular frequency of the 

screw rotation. Finally, this study used Mechanics 

Explorers to demonstrate the operational status of 

the TFS from multiple angles and in all directions, as 

shown in Figure 4. Figure 4 adopts a multi angle and 

all-round visualization approach, with each view 

detailing the key components of the system, 

including workbench, slide rail, servo motor, and 

base. The worktable is connected to the servo motor 

and ball screw through a coupling, and the rotation 

of the servo motor shaft is converted into the feed 

motion of the worktable on the guide rail using the 

ball screw. In the figure, sensor 1 is arranged in the 

z  direction of the front screw support bearing seat, 

sensor 2 is arranged in the z  direction of the guide 

rail end, sensor 3 is arranged in the z  direction of 

the connection between the worktable and the screw 

nut,  sensor  4  is  arranged  in the x  direction of the  

Staging 

Ball screw

Rail 

Coupling 

Servo motor Bearing 

Lathe bed

Slider 
Sensor No. 1

Sensor No. 2

Sensor No. 3

Sensor No. 4

Sensor No. 5

 
Fig. 4. Visualization of the operation status of the table feed system 



DIAGNOSTYKA, Vol. 25, No.4 (2024) 

Dong Y, Li T: Fault diagnosis of computer numerical control machine tools table feed system based on… 

 

6 

screw nut, and sensor 5 is arranged in the z  

direction of the rear screw support bearing seat. The 

physical state of the TFS is updated in real time and 

visually presented when the TFS fails, based on the 

fault information. This achieves state 

synchronization between the TFS's physical entity 

and its virtual entity in the digital domain. 

 

3.2. TFS fault diagnosis model based on DT 

technique and MSP-CNN-WD 

Traditional machine learning algorithms usually 

require large-scale datasets for training, but massive 

data in real environments are difficult to obtain, 

making traditional machine learning algorithms 

likely to fall into the overfitting of a few kinds of 

data, which restricts the engineering applications of 

machine learning [21, 22]. The DT model of TFS 

built in this study can produce S-S with rich 

information on typical faults, and the signals derived 

from the simulation of the DT model and the real 

signals from sensors in engineering practice have 

consistent time-frequency fault characteristics [23]. 

In view of this, this study makes full use of the fault 

information in the S-S as an effective supplement to 

the fault information in the actual signals, and 

constructs a migration diagnostic model based on 

multi scale parallel 1-dimensional convolutional 

neural network (MSP-CNN). In addition, in order to 

reduce the distributional differences between the 

migrated fault features, the study further optimizes 

the MSP-CNN and proposes a model based on multi 

scale parallel 1-dimensional convolutional neural 

network based on Wasserstein distance (MSP-CNN-

WD) model. Additionally, Figure 5 depicts the 

general layout of the model.  
MSP-CNN is computed by performing sliding 

convolution on the input data in order to extract the 

migration fault feature extraction, which is 

calculated as shown in Equation (9). 

 ( )1

,

1

l l l l

i

N

j i j j

j

y f x w b+

=

 
=  + 

 
  (9) 

In Equation (9), 
1

,

l

i jy +
 is the corresponding value 

of the neuron in layer 1l +  obtained after the 

convolution operation in layer l . 
l

ix  is the i th 

convolutional region in layer l . 
l

jw  is the j th 

convolution kernel of the l th layer. N  is the 

convolution kernels. To reduce the dimensionality of 

the migrated fault features and to reduce the number 

of MSP-CNN model with training parameters, a 

pooling layer is added to the convolutional layer, 

which is calculated as shown in Equation (10). 

  1

( 1) 1( ) max ( )l l

i W t iWP i a t+

− +  =  (10) 

The width of the pooling window is represented 

by W  in Equation (10), and 
1( )lP i+

 is the feature 

vector of layer 1l +  following the maximum pooling 

procedure. The MSP-CNN model needs to spend 

more time while pursuing high fidelity, which makes 

the DT model face more difficulties in synchronizing 

the mapping of physical entities. Consequently, the 

study simplifies the DT model to some extent when 

building it in order to reduce the complexity of the 

model. This results in a large distributional 

difference between the generated simulated and 

actual signals, which causes the MSP-CNN 

algorithm to have a large distributional difference 

when extracting the migrated fault features. To 

address this issue, this study presents the 

Wasserstein distance, which begins with fault 

feature modification and reduces distributional 

disparities between simulated and real signals to 

increase their efficacy [24,25]. Assuming that the 

sets of simulated and actual signals migrating fault 

features are sP  and tP , the Wasserstein distance 

between the two signals can be Equation (11). 

( )
( ) ( ), ~

,
, inf

s t
s t

s t s tx x
P P

W P P E x x


=  −    (11) 

In Equation (11), inf  is the lower bound taken, 

sx  is the S-S sample. tx is the actual signal sample, 

and ( ),s tP P  is the set of joint probability 

Simulate Signal

Actual Signal

Simulated signal 

characteristics

Actual signal 

characteristics

Classifier 

Wasserstein 

distance

LOSSCS

LOSSDA

LOSSCr

Classifier MSP-CNN feature extractor
 

Fig. 5. Overall structure of MSP-CNN-WD model 
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distributions of 
sP  and 

tP . However, the lower 

certainty bound cannot be solved directly by 

converting the Wasserstein distance into Equation 

(12). 

( ) ( ) ( )~ ~
1

, sup
s s t t

L

s t x P s x P t
f

W P P E f x E f x


= −      
‖‖

 (12) 

In Equation (12), 1
L

f   is 1st order Lipschitz 

continuous. To penalize the gradients with large 

values of the paradigm and increase the stability of 

the model, a gradient penalty function is introduced 

into the MSP-CNN-WD model in this study using 

the domain difference loss based approach. This 

results in the domain difference loss containing the 

gradient penalty function as in Equation (13). 

( )
2

ˆDA WD 2
ˆLoss Loss ( ) 1x f x= +  −  (13) 

In Equation (13),   is the gradient penalty  

factor. Minimizing Equation (13) enables the 

adaptation of the S-S to the marginal probability 

distribution of the actual signal migration fault 

features as in Equation (14). 

 min DALoss


 (14) 

This study further optimizes the objective 

function of the FD model of MSP-CNN-WD as in 

Equation (15). 

( )CS CT DALoss min Loss Loss Loss  = + +  (15) 

In Equation (15), 
CSLoss  is the cross-entropy 

loss for S-S classification.   is the penalty factor for 

cross-entropy loss of actual signal classification. 

CTLoss  is the cross-entropy loss for actual signal 

classification.   is the penalty factor for domain 

difference fitness regular term. DALoss  is the 

domain difference loss based on Wasserstein 

distance. 

The specific workflow of the TFS FD method 

based on DT and MSP-CNN-WD is shown in Figure 

6. To gather the missing fault data in the real physical 

space, the study first built the DT model of TFS and 

then ran simulation tests on a range of working 

situations based on the model. On this basis, the 

study utilizes the acquired signals to train the MSP-

CNN-WD migration model for diagnosis. The model 

extracts different types of fault features from the 

simulated and real signals, respectively, through an 

intermediate multi-scale convolutional algorithm, 

and restricts the learning process of the MSP-CNN 

by using the Wasserstein distance as a regular term 

to reduce the distributional difference between the 

simulated and real signals. The system state is then 

obtained by feeding the actual TFS monitoring 

signals into the MSP-CNN-WD model. 

 

4. PERFORMANCE VALIDATION OF FUSED 

MSP-CNN-WD AND DT FAULT 

DIAGNOSIS METHODS 

 

The first part of this section examines the DT 

acquisition and relocatability of SupB faults, with a 

particular emphasis on two common fault types: the 

screw raceway's and the screw SupB's InR and OuR 

faults. The FD impact of the suggested approach is 

then confirmed under seven CNCMT working 

circumstances. 

 

4.1. Digital twin acquisition and relocatability 

results for support bearing failures 

Due to frequent reversals, high-speed operation, 

and variable loads during CNC machining, the 

worktable feed system is prone to significant impact 

vibrations. Common faults such as ball screw 

failures, screw support bearing failures, and coupling 

failures are accompanied by different characteristic 

vibration responses. Therefore, the study deployed a 

contact type acceleration vibration sensor (model 

PCB 333B30, sensitivity of 101.6mV/g, range of ± 

50gpk, frequency range of 0.5-3kHz, nonlinearity≤

1%) in physical space to collect vibration signals of 

the worktable feed system. The layout of the sensor 

is shown in Figure 4 above. The first sensor is 

arranged in the z  direction of the front screw 

support bearing seat, the second sensor is arranged 

in the z  direction of the guide rail end, the third 

sensor is arranged in the z  direction of the 

connection between the worktable and the screw nut, 

the fourth sensor is arranged in the x  direction of 

the screw nut, and the fifth sensor is arranged in the 

Start 
Analysis of the structure and mechanism 

of the table feed system

Fault type+operating 

conditions

DT model of  table feed 

system

Obtaining simulation signals 

through simulation experimentsMSP-CNN-WD
Simulated 

signal+actual signalTraining model

Actual Signal

Constructing a DT model for the table 

feed system

Health status of table 

feed system
End Actual signal+health 

status

Data monitoring+intelligent 

diagnosisMSP-CNN-WD
 

Fig. 6. Fault diagnosis process for table feed system based on DT and MSP-CNN-WD 
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z  direction of the rear screw support bearing seat. 

These sensors are accelerometers that obtain data by 

directly measuring vibration acceleration signals, 

without obtaining acceleration amplitudes through 

other mathematical operations. The study used LMS 

SCADAS Mobile equipment for signal acquisition, 

which has 8-channel wiring terminals, high-speed 

synchronous acquisition, and digital signal 

processing functions. The sensor is connected to 

LMS SCADAS Mobile, and the data is transmitted 

to the PC through the network and saved to the 

digital twin database, achieving autonomous 

management and monitoring of the system. The 

research test bench includes the basic components of 

the worktable feed system, simulating real working 

conditions, and the feed speed can be controlled by 

the control cabinet and computer. The sensor is 

connected to the LMS data acquisition device 

through a connecting cable. The device receives 

acceleration response signals under different health 

conditions online at a sampling rate of 6400Hz and 

transmits them to the computer through a network 

cable. 

This study examines the validity of the 

simulation signal produced by the DT model by 

focusing on two common fault types: the InR and 

OuR faults of the screw SupB and the screw 

raceway. It also examines the transfer relationship 

between the simulation signal and the real signal in 

the DT from the perspectives of the probability 

distribution, the frequency domain, and the time 

domain (TiD). The screw SupB model used for the 

investigation is NTN6205, the TiD signal duration is 

1 s, and the spectrum's frequency range is 0~100 Hz.  

Figure 7 shows the TiD waveforms of the 

simulated and actual signals of the SupB failure. 

Comparing Figure 7(a) and Figure 7(c), the 

simulated and actual signals of the bearing OuR fault 

show the characteristic of "double impact", and the 

average fault time is 0.198s and 0.196s respectively. 

Compared with the two, there is only a relative error 

of 1.02%, and the fault period is basically the same. 

The amplitude of the actual and S-S of the bearing 

InR faults exhibit periodic changes when compared 

to Figures 7(b) and 7(d). Both exhibit the "double 

impact" features, with an average fault period of 

0.199 and 0.197 seconds, respectively. Compared 

with the two, there is only a relative deviation of 

0.48%, and the fault period is also more consistent. 

The average failure period is 0.199s and 0.197s 

respectively, with a relative deviation of 0.48%, and 

the failure period is more consistent. 

The envelope spectrum of the real and simulated 

signals corresponding to the SupB's OuR and InR 

failures is displayed in Figure 8. From the envelope 

spectrum shown in Figure 8, it can be observed that 

the spectra of the simulated and real signals of the 

InR and OuR faults of the SupB contain the 

theoretical fault eigenfrequencies and torques, which 

have a more consistent intuitive effect. The result 

further verifies the reasonableness of the SupB 

OuRand InR fault modeling from the frequency 

domain perspective. 

Figure 9 shows the distribution of the simulated 

TiD and real TiD signals under the failure of the OuR 

and InRs of the SupB. The S-S for the OuR fault of 

the SupB contain fewer factors and are in a simpler 

form, so the data distributions are more concentrated 
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Fig. 8. The envelope spectrum of the simulated 

signals and actual signals corresponding to the outer 

and inner ring faults of the supporting bearing 
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Fig. 9. Distribution of simulation and real time 

domain signals under outer and inner ring faults of 

support bearings 

 

and show higher probability density peaks. 

However, in practice, the influence of a variety of 

random factors in other parts of the TFS makes the 

resulting probability density peak low and the 

probability distribution tends to be smooth. The 

probability distributions of the simulated and actual 

signals are very similar in the same fault case. 

 

4.2. FD experiments and analysis of TFS 

To validate the FD effect of the proposed 

method, seven CNCMT working conditions are set 

up in this study, i.e., normal condition (NC), screw 

raceway failure condition (LS), coupling bolt 

loosening failure condition (SC), guideway poor 

lubrication failure condition (LR), screw SupB InR 

failure condition (IR), screw SupB OuR failure 

condition (OR), and screw SupB RolE failure 

condition (RE). In this study, two sets of experiments 

are set up according to the number of samples of 

actual signals, corresponding to 50 and 40 samples, 

respectively. 
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Fig. 10. The ConM between the IC of model training 

and the test set when the sample size is 50 

 

When there are 50 samples, Figure 10 displays 

the confusion matrix (ConM) of the test set together 

with the iteration curve (IC) of the model training. In 

the model training IC graph, the accuracy of MSP-
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CNN-WD increases rapidly during 0-50 iterations 

during the training process, and stabilizes at around 

60 iterations, and the final accuracy of the model 

reaches 98.61%. 
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Fig. 11. The ConM between the IC of model training 

and the test set when the sample size is 40 

 

When there are 40 samples, Figure 11 displays 

the ConM of the test set and the IC of the model 

training. In the model training IC graph, the accuracy 

of MSP-CNN-WD rises rapidly during 0-50 

iterations and stabilizes at about 80 iterations, and 

the final accuracy of the model reaches 95.01%. 

Comprehensively analyzing Figure 11 and Figure 

12, although the classification accuracy of the model 

decreases with a smaller number of samples, its 

accuracy can be maintained above 95%, which is 

able to meet the FD requirements of the actual 

workbench. As a result, MSP-CNN-WD has good 

applicability for FD of actual TFS. 

The findings of MSP-CNN-WD's performance 

comparison with two other widely used fault 

detection models are displayed in Figure 12. MSP-

CNN-WD has a 96.64% detection rate in Figure 

12(a), compared to 93.77% for GAN and 94.23% for 

LSTM-GRU. Figure 12(b) shows that the missed 

detection rate for MSP-CNN-WD is 3.45%, 

compared to 16.98% and 11.97% for GAN and 

LSTM-GRU. As a result, MSP-CNN-WD has more 

superior detection fault detection performance. 
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Fig. 12. Comparison of fault detection performance 

of three models 

 

5. CONCLUSION 

 

The feed system of CNCMT requires frequent 

mechanical operations and is prone to failures, which 

seriously affects the efficiency, work accuracy and 

load responsiveness of CNCMT. Therefore, to 

ensure the machining stability of CNCMT, this study 

proposes an FD method for TFS of CNCMT by 

fusing DT and MSP-CNN-WD. The study 

conducted relevant experiments on it, and the results 

revealed that the average failure time of the 

simulated and actual signals of the bearing OuR fault 

is 0.198s and 0.196s, respectively, with only 1.02% 

relative error, and the failure period is basically the 

same. The average failure period of the actual and S-

S of the bearing InR fault was 0.199s and 0.197s, 

respectively, with only a relative deviation of 0.48%. 

When the samples was 50, the accuracy of MSP-

CNN-WD increased rapidly during 0-50 iterations, 

and stabilized at about 60 iterations, with an 

accuracy of 98.61%. When the samples was 40, the 

accuracy of MSP-CNN-WD stabilized at around 80 

iterations, and the accuracy of the final model 

reached 95.01%. In Figure 12(a), the detection rate 

and leakage rate of MSP-CNN-WD were 96.64% 

and 3.45%, respectively, which were better than the 

comparison model. The limitation of this study was 

the failure to use more types of sensors to obtain 
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more bench information, which can be further 

refined in future studies. 
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