PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Low-cost sensors for air quality monitoring - the current state of the technology and a use overview

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In recent years the monitoring of air quality using cheap sensors has become an interesting alternative to conventional analytical techniques. Apart from vast price differences conventional techniques need to be performed by the trained personnel of commercial or research laboratories. Sensors capable of measuring dust, ozone, nitrogen and sulphur oxides, or other air pollutants are relatively simple electronic devices, which are comparable in size to a mobile phone. They provide the general public with the possibility to monitor air quality which can contribute to various projects that differ in regional scale, commercial funding or community-base. In connection with the low price of sensors arises the question of the quality of measured data. This issue is addressed by a number of studies focused on comparing the sensor data with the data of reference measurements. Sensory measurement is influenced by the monitored analyte, type and design of the particular sensor, as well as by the measurement conditions. Currently sensor networks serve as an additional source of information to the network of air quality monitoring stations, where the density of the network provides concentration trends in the area that may exceed specific measured values of pollutant concentrations and low uncertainty of reference measurements. The constant development of all types of sensors is leading to improvements and the difference in data quality between sensors and conventional monitoring techniques may be reduced.
Rocznik
Strony
41--54
Opis fizyczny
Bibliogr. 66 poz., wykr., tab., fot.
Twórcy
autor
  • Institute of Environmental Technology, CEET, VSB-Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava, Czech Republic
  • Institute of Environmental Technology, CEET, VSB-Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava, Czech Republic
  • Institute of Environmental Technology, CEET, VSB-Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava, Czech Republic
Bibliografia
  • [1] Barkjohn KK, Bergin MH, Norris C, Schauer JJ, Zhang Y, Black M, et al. Aerosol Air Qual Res. 2019;20:297-313. DOI: 10.4209/aaqr.2018.11.0394.
  • [2] Liu MK. Barkjohn K, Norris CJ, Schauer J, Zhang J, Zhang Y, et al. Environ Sci: Processes Impacts. 2020;22:131-143. DOI: 10.1039/C9EM00377K.
  • [3] Amegah AK. Environ Pollut. 2018;241:1132-7. DOI: 10.1016/j.envpol.2018.06.044.
  • [4] Park J, Lee PS-H. Forests. 2020;11:1060, DOI: 10.3390/f11101060.
  • [5] Siddiqui AR, Lee K, Bennett D, Yang X, Brown KH, Bhutta ZA, et al. Indoor Air. 2009;19:75-82. DOI: 10.1111/j.1600-0668.2008.00563.x.
  • [6] Cross ES, Williams LR, Lewis DK, Magoon GR, Onasch TB, Kaminsky ML, et al. Atmos Measurement Techniq. 2017;10:3575-88. DOI: 10.5194/amt-10-3575-2017.
  • [7] Mead MI, Popoola O, Stewart G, Landshoff P, Calleja M, Hayes M, et al. Atmos Environ. 2013;70:186-203, DOI: 10.1016/j.atmosenv.2012.11.060.
  • [8] Mukherjee A, Brown SG, McCarthy MC, Pavlovic NR, Stanton LG, Snyder JL, et al. Sensors. 2019;19:4701. DOI: 10.3390/s19214701.
  • [9] Pérez-Rial D, López-Mahía P, Muniategui-Lorenzo S, Prada-Rodríguez D. J Environ Monit. 2009;11:1216-25. DOI: 10.1039/B819370C.
  • [10] Zikova N, Masiol M, Chalupa DC, Rich DQ, Ferro AR, Hopke PK, Sensors. 2017;17:1922. DOI: 10.3390/s17081922.
  • [11] Zhan Y, Johnson K, Norris C, Shafer MM, Bergin MH, Zhang Y, et al. Sci Total Environ. 2018;626:507-18. DOI: 10.1016/j.scitotenv.2018.01.024.
  • [12] Costa-Gómez I, Bañón D, Moreno-Grau S, Revuelta R, Elvira-Rendueles B, Moreno J. Air Qual Atmos Health. 2020;13:15-23. DOI: 10.1007/s11869-019-00768-8.
  • [13] Air quality sensors field evaluation. Available from: http://www.aqmd.gov/aq-spec/evaluations/field. Accessed 30.11.2020.
  • [14] EOC Inc. NDIR Gas Sensor Modules. Available from: https://www.eoc-inc.com/ndir-gas-sensor-modules/. Accessed 1.12.2020.
  • [15] Portable Gas Detector, Single & Multi Gas monitor. SafetyGas. Available from: https://en.safetygas.com/gas-detection/portable-gas-detector. Accessed 1.12.2020.
  • [16] Application Notes. Alphasense. Available from: http://www.alphasense.com/index.php/safety/applicationnotes/. Accessed 1.12.2020.
  • [17] Environmental sensors Co. Hand held models. Available from: http://www.environmentalsensors.com/y-series-models.html. Accessed 2.12.2020.
  • [18] Szulczyński B, Gębicki J. Environments. 2017;4:21. DOI: 10.3390/environments4010021.
  • [19] Dey A, Materials Sci Eng: B. 2018;229:206-17. DOI: 10.1016/j.mseb.2017.12.036.
  • [20] Ivanovskaya M, Gurlo A, Bogdanov P. Sensors Actuators B: Chemical. 2001;77:264-7. DOI: 10.1016/S0925-4005(01)00708-0.
  • [21] Afzal A, Cioffi N, Sabbatini L, Torsi L. Sensors Actuators B: Chemical. 2012;171-172:25-42. DOI: 10.1016/j.snb.2012.05.026.
  • [22] Becker T, Tomasi L, Bosch-v.Braunmühl C, Müller G, Sberveglieri G, Fagli G, et al. Sensors Actuators A: Physical 1999;74:229-32. DOI: 10.1016/S0924-4247(98)00301-X.
  • [23] Cantalini C, Valentini L, Lozzi L, Armentano I, Kenny JM, Santucci S. Sensors Actuators B: Chemical. 2003;93:333-7. DOI: 10.1016/S0925-4005(03)00224-7.
  • [24] Alphasense Ltd. Technical Specification - PID A12 Photo Ionisation Detector. Available from: http://www.alphasense.com/WEB1213/wp-content/uploads/2019/08/PID-A12-1.pdf. Accessed 16.05.2020.
  • [25] Poole CF. J Chromatography A. 2015;1421:137-53. DOI: 10.1016/j.chroma.2015.02.061.
  • [26] MSA Safety, Data Sheet-0800-32. Available from: http://media.msanet.com/NA/USA/PortableInstruments/CombinationInstrumentsandCombustibleGasIndicators/SiriusMultigasDetector/0800-32.pdf. Accessed 30.11.2020.
  • [27] Coelho Rezende G, Le Calvé S, Brandner JJ, Newport D. Sensors Actuators B: Chemical. 2019;287:86-94. DOI: 10.1016/j.snb.2019.01.072.
  • [28] Ripoll A, Viana M, Padrosa M, Querol X, Minutolo A, Hou KM, et al. Sci Total Environ. 2019;651:1166-79. DOI: 10.1016/j.scitotenv.2018.09.257.
  • [29] Brynda P, Kopřiva J, Horák M. Procedia Eng. 2015;120:902-7. DOI: 10.1016/j.proeng.2015.08.781.
  • [30] Malings C, Tanzer R, Hauryliuk A, Saha PK, Robinson AL, Presto AA, et al. Aerosol Sci Technol. 2020;54:160-74. DOI: 10.1080/02786826.2019.1623863.
  • [31] Jiao W, Hagler G, Williams R, Sharpe R, Brown R, Garver D, et al. Atmospheric Measurement Techniques. 2016;9:5281-92. DOI: 10.5194/amt-9-5281-2016.
  • [32] Air Quality Egg - Science is Collaboration. Available from: https://airqualityegg.com/home. Accessed 31.05.2020.
  • [33] Empowering the World to Breathe Cleaner Air. IQAir. Available from: https://www.iqair.com/. Accessed 31.05.2020.
  • [34] luftdaten.info. Available from: https://luftdaten.info/. Accessed 1.06.2020.
  • [35] Ion Science, Gas and Leak Detectors. Available from: https://www.ionscience.com/gas-and-leak-detectors/. Accessed 30.11.2020.
  • [36] Product Range - Ion Science. Available from: https://www.ionscience.com/product-range/. Accessed 31.05.2020.
  • [37] Khedo KK, Perseedoss R, Mungur A. IJWMN. 2010;2:31-45. DOI: 10.5121/ijwmn.2010.2203.
  • [38] Tsujita W, Yoshino A, Ishida H, Moriizumi T. Sensors Actuators B: Chemical. 2005;110:304-11. DOI: 10.1016/j.snb.2005.02.008.
  • [39] Bettair Cities SL. Report of deployment of air quality monitor in the city of Girona. Available from: https://seu.girona.cat/portal/dades/transparencia/docs/2019_qualitat-aire-Bettair.pdf.
  • [40] Bettair Cities SL. Achieving high accuracy air quality measurements with Bettair® static monitors. Available from: https://nanosen-aqm.sciencesconf.org/data/pages/O5_4_Santiago.pdf.
  • [41] Spinelle L, Gerboles M, Villani MG, Aleixandre M, Bonavitacola F. Sensors Actuators B: Chemical. 2015;215:249-57. DOI: 10.1016/j.snb.2015.03.031.
  • [42] Spinelle L, Gerboles M, Villani MG, Aleixandre M, Bonavitacola F. Sensors Actuators B: Chemical. 2017;238:706-15. DOI: 10.1016/j.snb.2016.07.036.
  • [43] Bauerová P, Šindelářová A, Rychlík Š, Novák Z, Keder J. Atmosphere. 2020;11:492. DOI: 10.3390/atmos11050492.
  • [44] Levy Zamora M, Xiong F, Gentner D, Kerkez B, Kohrman-Glaser J, Koehler K. Environ Sci Technol. 2019;53:838-49. DOI: 10.1021/acs.est.8b05174.
  • [45] Zikova N, Hopke PK, Ferro AR. J Aerosol Sci. 2017;105:24-34. DOI: 10.1016/j.jaerosci.2016.11.010.
  • [46] Jayaratne R, Liu X, Thai P, Dunbabin M, Morawska L. Atmospheric Measurement Techniques. 2018;11:4883-90. DOI: 10.5194/amt-11-4883-2018.
  • [47] Zheng T, Bergin MH, Johnson KK, Tripathi SN, Shirodkar S, Landis MS, et al. Atmospheric Measurement Techniques. 2018;11:4823-46. DOI: 10.5194/amt-11-4823-2018.
  • [48] Castell N, Dauge FR, Schneider P, Vogt M, Lerner U, Fishbain B, et al. Environ Int. 2017;99:293-302. DOI: 10.1016/j.envint.2016.12.007.
  • [49] Gameli Hodoli C, Coulon F, Mead MI. Heliyon. 2020;6:e04206. DOI: 10.1016/j.heliyon.2020.e04206.
  • [50] Wang Y, Li J, Jing H, Zhang Q, Jiang J, Biswas P. Aerosol Sci Technol. 2015;49:1063-77. DOI: 10.1080/02786826.2015.1100710.
  • [51] Badura M, Batog P, Drzeniecka-Osiadacz A, Modzel P. SN Appl Sci. 2019;1:622. DOI: 10.1007/s42452-019-0630-1.
  • [52] Shao W, Zhang H, Zhou H, Sensors. 2017;17:1033. DOI: 10.3390/s17051033.
  • [53] Clougherty JE, Kheirbek I, Eisl HM, Ross Z, Pezeshki G, Gorczynski JE, et al. J Expo Sci Environ Epidemiol. 2013;23:232-40. DOI: 10.1038/jes.2012.125.
  • [54] Spinelle L, Aleixandre M, Gerboles M. Protocol of evaluation and calibration of low-cost gas sensors for the monitoring of air pollution. EUR 26112. Luxembourg (Luxembourg): Publications Office of the European Union; 2013. JRC83791. DOI: 10.2788/9916.
  • [55] Honeywell, MultiRAE Benzene. Available from: https://safety.honeywell.com/content/his/us/en/home/products/by-category/gas-flame-detection/portables/multirae-benzene.html. Accessed 1.12.2020.
  • [56] Ion Science: gas detectors & PID sensors. Available from: https://www.ionscience.com/. Accessed 1.06.2020.
  • [57] Stark instruments. Gas Detector. Available from: http://www.starkinstrument.com/e_products/Gas-Detector-6-29.html. Accessed 1.12.2020.
  • [58] Driscoll JN. J Chromatogr Sci. 1982;20:91-4. DOI: 10.1093/chromsci/20.2.91.
  • [59] Pang X, Nan H, Zhong J, Ye D, Shaw MD, Lewis AC. Sci Total Environ. 2019:664:771-9. DOI: 10.1016/j.scitotenv.2019.01.348.
  • [60] Portable VOC analyzer - Gas chromatograph - X-PID 9500. Available from: https://en.safetygas.com/portable-voc-analyzer-xpid-9500-gas-chromatograph. Accessed 3.12.2020.
  • [61] FROG-5000 Portable Gas Chromatograph GC PID. Available from: https://www.defiant-tech.com/frogportable-gas-chromatograph-gc/. Accessed 3.12.2020.
  • [62] Rezende GC, Le Calvé S, Brandner JJ, Newport D. Micromachines. 2019;10:228. DOI: 10.3390/mi10040228.
  • [63] Gupta P, Doraiswamy P, Levy R, Pikelnaya O, Maibach J, Feenstra B, et al. GeoHealth. 2018;2:172-81. DOI: 10.1029/2018GH000136.
  • [64] Levy RC, Mattoo S, Munchak LA, Remer LA, Sayer AM, Patadia F, et al. Atmospheric Measurement Techniques. 2013;6:2989-3034. DOI: 10.5194/amt-6-2989-2013.
  • [65] Sowden M, Blake D, Atmospheric Environment. 2020;241:117620. DOI: 10.1016/j.atmosenv.2020.117620.
  • [66] Hubbell BJ, Kaufman A, Rivers L, Schulte K, Hagler G, Clougherty J, et al. Sci Total Environ. 2018;621: 886-94. DOI: 10.1016/j.scitotenv.2017.11.275.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-da407caf-1055-4a39-9350-170a89ddb1c6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.