PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Rotor Speed and Load Torque Estimations of Induction Motors via LSTM Network

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, a long short-term memory (LSTM) based estimator using rotating axis components of the stator voltages and currents as inputs is designed to perform estimations of rotor mechanical speed and load torque values of the induction motor (IM) for electrical vehicle (EV) applications. For this aim, first of all, an indirect vector controlled IM drive is implemented in simulation to collect both training and test datasets. After the initial training, a fine-tuning process is applied to increase the robustness of the proposed LSTM network. Furthermore, the LSTM parameters, layer size, and hidden size are also optimised to increase the estimation performance. The proposed LSTM network is tested under two different challenging scenarios including the operation of the IM with linear and step-like load torque changes in a single direction and in both directions. To force the proposed LSTM network, it is also tested under the variation of stator and rotor resistances for the both-direction scenario. The obtained results confirm the highly satisfactory estimation performance of the proposed LSTM network and its applicability for the EV applications of the IMs.
Wydawca
Rocznik
Strony
310--324
Opis fizyczny
Bibliogr. 31 poz., rys., tab.
Twórcy
  • Department of Electrical and Electronic Engineering, Nigde Omer Halisdemir University, Nigde, Türkiye
  • Koç Bilgi ve Savunma Teknolojileri A.Ş., Middle East Technical University Technopolis, Ankara, Türkiye
autor
  • Department of Electrical and Electronic Engineering, Nigde Omer Halisdemir University, Nigde, Türkiye
autor
  • Department of Electrical and Electronic Engineering, Nigde Omer Halisdemir University, Nigde, Türkiye
autor
  • Department of Electrical and Electronic Engineering, Nigde Omer Halisdemir University, Nigde, Türkiye
Bibliografia
  • Acikgoz, H. and Korkmaz, D. (2021). Long short-term memory network-based speed estimation model of an asynchronous motor. In: Proceedings of the 12th International Symposium on Advanced Topics in Electrical Engineering (ATEE), Bucharest, Romania, pp. 1-6.
  • Alsofyani, I. M. and Idris, N. R. N. (2016). Simple Flux Regulation for Improving State Estimation at Very Low and Zero Speed of a Speed Sensorless Direct Torque Control of an Induction Motor. IEEE Transactions on Power Electronics, 31(4), pp. 3027-3035.
  • Bednarz, S. A. and Dybkowski, M. (2019). Estimation of the Induction Motor Stator and Rotor Resistance using Active and Reactive Power Based Model Reference Adaptive System Estimator. Applied Sciences, 9(23), p. 5145.
  • Demir, R. (2023). Robust Stator Flux and Load Torque Estimations for Induction Motor Drives with EKF-Based Observer. Electrical Engineering, 105, pp. 551-562.
  • El Merrassi, W., Abounada, A. and Ramzi, M. (2021). Advanced Speed Sensorless Control Strategy for Induction Machine Based on Neuro-MRAS Observer. Materials Today: Proceedings, 45, pp. 7615-7621.
  • Ilten, E., Calgan, H. and Demirtas, M. (2022). Design of Induction Motor Speed Observer Based on Long Short-Term Memory. Neural Computing and Applications, 34(21), pp. 18703-18723.
  • Imane, G., Youcef, M., Abdelmadjid, G. and Zakaria, C. (2017). Neural Adaptive Kalman Filter for Sensorless Vector Control of Induction Motor. International Journal of Power Electronics and Drive Systems (IJPEDS), 8(4), pp. 1841-1851.
  • Karanayil, B., Rahman, M. F. and Grantham, C. (2005). Stator and Rotor Resistance Observers for Induction Motor Drive using Fuzzy Logic and Artificial Neural Networks. IEEE Transactions on Energy Conversion, 20(4), pp. 771-780.
  • Karanayil, B., Rahman, M. F. and Grantham, C. (2007). Online Stator and Rotor Resistance Estimation Scheme using Artificial Neural Networks for Vector Controlled Speed Sensorless Induction Motor Drive. IEEE Transactions on Industrial Electronics, 54(1), pp. 167-176.
  • Kim, S. H., Park, T. S., Yoo, J. Y. and Park, G. T. (2001). Speed-Sensorless Vector Control of an Induction Motor Using Neural Network Speed Estimation. IEEE Transactions on Industrial Electronics, 48(3), pp. 609-614.
  • Orlowska-Kowalska, T., Dybkowski, M. and Szabat, K. (2010). Adaptive Sliding-Mode Neuro-Fuzzy Control of the Two-Mass Induction Motor Drive without Mechanical Sensors. IEEE Transactions on Industrial Electronics, 57(2), pp. 553-564.
  • Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J. and Chintala, S. (2019). PyTorch: An Imperative Style, High-Performance Deep Learning Library. Advances in Neural Information Processing Systems, 32, pp. 8024-8035.
  • Reddy, B., Poddar, G. and Muni, B. P. (2022). Parameter Estimation and Online Adaptation of Rotor Time Constant for Induction Motor Drive. IEEE Transactions on Industry Applications, 58(2), pp. 1416-1428.
  • Rodriguez, J., Kennel, R. M., Espinoza, J. R., Trincado, M., Silva, C. A. and Rojas, C. A. (2012). High-Performance Control Strategies for Electrical Drives: An Experimental Assessment. IEEE Transactions on Industrial Electronics, 59(2), pp. 812-820.
  • Selvin, S., Vinayakumar, R., Gopalakrishnan, E. A., Menon, V. K. and Soman, K. P. (2017). Stock price prediction using LSTM, RNN and CNN-sliding window model. In: Proceeding of the 2017 International Conference on Advances in Computing, Communications and Informatics (ICACCI), Udupi, India, pp. 1643-1647.
  • Simoes, M. G. and Bose, B. K. (1995). Neural Network Based Estimation of Feedback Signals for a Vector Controlled Induction Motor Drive. IEEE Transactions on Industry Applications, 31(3), pp. 620-629.
  • Sun, X., Chen, L., Yang, Z. and Zhu, H. (2013). Speed-Sensorless Vector Control of a Bearingless Induction Motor with Artificial Neural Network Inverse Speed Observer. IEEE/ASME Transactions on Mechatronics, 18(4), pp. 1357-1366.
  • Sundermeyer, M., Ney, H. and Schlüter, R. (2015). From Feedforward to Recurrent LSTM Neural Networks for Language Modeling. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 23(3), pp. 517-529.
  • Teler, K. and Orłowska-Kowalska, T. (2023). Analysis of the Stator Current Prediction Capabilities in Induction Motor Drive using the LSTM Network. Power Electronics and Drives, 8(1), pp. 31-52.
  • Ullah, A., Ahmad, J., Muhammad, K., Sajjad, M. and Baik, S. W. (2018). Action Recognition in Video Sequences using Deep Bi-Directional LSTM with CNN Features. IEEE Access, 6, pp. 1155-1166.
  • Vas, P. (1998). Sensorless Vector and Direct Torque Control. Oxford University Press, New York.
  • Verma, S., Henwood, N., Castella, M., Malrait, F. and Pesquet, J. C. (2020a). Modeling electrical motor dynamics using encoder-decoder with recurrent skip connection. In: Proceedings of the AAAI Conference on Artificial Intelligence, 34(02), British Columbia, Canada, pp. 1387-1394.
  • Verma, S., Henwood, N., Castella, M., Jebai, A. K. and Pesquet, J. C. (2020b). Neural networks based speed-torque estimators for induction motors and performance metrics. In: Proceedings of the 46th Annual Conference of the IEEE Industrial Electronics Society, Singapore, pp. 495-500.
  • Verma, S., Henwood, N., Castella, M., Jebai, A. K. and Pesquet, J. C. (2023). Neural Speed–Torque Estimator for Induction Motors in the Presence of Measurement Noise. IEEE Transactions on Industrial Electronics, 70(1), pp. 167-177.
  • Vicente, I., Endeman, A., Garin, X. and Brown, M. (2010). Comparative Study of Stabilising Methods for Adaptive Speed Sensorless Full-Order Observers with Stator Resistance Estimation. IET Control Theory Applications, 4(6), pp. 993-1004.
  • Wróbel, K., Serkies, P. and Szabat, K. (2020). Model Predictive Base Direct Speed Control of Induction Motor Drive-Continuous and Finite Set Approaches. Energies, 13(5), p. 1193.
  • Yildiz, R., Barut, M. and Zerdali, E. (2020a). A Comprehensive Comparison of Extended and Unscented Kalman Filters for Speed-Sensorless Control Applications of Induction Motors. IEEE Transactions on Industrial Informatics, 16(10), pp. 6423-6432.
  • Yildiz, R., Barut, M. and Demir, R. (2020b). Extended Kalman Filter Based Estimations for Improving Speed‐Sensored Control Performance of Induction Motors. IET Electric Power Applications, 14(12), pp. 2471-2479.
  • Yildiz, R., Demir, R. and Barut, M. (2023). Online Estimations for Electrical and Mechanical Parameters of the Induction Motor by Extended Kalman Filter. Transactions of the Institute of Measurement and Control, Early access, Available at: https://doi.org/10.1177/01423312231160582.
  • Yin, Z., Bai, C., Du, N., Du, C. and Liu, J. (2021). Research on Internal Model Control of Induction Motors Based on Luenberger Disturbance Observer. IEEE Transactions on Power Electronics, 36(7), pp. 8155-8170.
  • Zhang, Y., Yin, Z., Zhang, Y., Liu, J. and Tong, X. (2020). A Novel Sliding Mode Observer with Optimized Constant Rate Reaching Law for Sensorless Control of Induction Motor. IEEE Transactions on Industrial Electronics, 67(7), pp. 5867-5878.
Uwagi
Special Section - Artificial Intelligent Based Designs and Applications for the Control of Electrical Drives
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-da3b19e9-709d-4784-b333-ef441f76042c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.