Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In the paper, Guo–Krasnoselskii’s fixed point theorem is adapted to study the existence of positive solutions to a class of boundary value problems for higher order differential equations with delay. The sufficient conditions, which assure that the equation has one positive solution or two positive solutions, are derived. These conclusions generalize some existing ones.
Wydawca
Czasopismo
Rocznik
Tom
Strony
87--100
Opis fizyczny
Bibliogr. 13 poz.
Twórcy
autor
- College of Science, Zhejiang Forestry University, Hangzhou, Zhejiang 311300, P.R. China
autor
- Department of Mathematics, Hangzhou Normal University, Hangzhou, Zhejiang 310036, P.R. China
Bibliografia
- [1] J. W. Lee, D. O’Regan, Existence results for differential delay equations-I, J. Differential Equations 102 (1993), 342–359.
- [2] A. Carvalho, L. A. Ladeira, M. Martelli, Forbidden periods in delay differential equation, Portugal. Math. 57(3) (2000), 259–271.
- [3] J. K. Hale, W. Huang, Global geometry of stable regions for two delay differential equations, J. Math. Anal. Appl. 178 (1993), 344–362.
- [4] Y. Li, Y. Kuang, Periodic solutions in periodic state-dependent delay differential equations and population models, J. Math. Anal. Appl. 255 (2001), 265–280.
- [5] D. Q. Jiang, Multiple positive solutions for boundary value problems of second-order delay differential equations, Appl. Math. Lett. 15 (2002), 575–583.
- [6] D. Bai, Y. Xu, Existence of positive solutions for boundary-value problems of second-order delay differential equations, Appl. Math. Lett. 18 (2005), 621–630.
- [7] W. B. Wang, J. H. Shen, Positive solutions to a multi-point boundary value problem with delay, Appl. Math. Comput. 188 (2007), 96–102.
- [8] T. Jankowski, Solvability of three point boundary value problems for second order ordinary differential equations with deviating arguments, J. Math. Anal. Appl. 312 (2005), 620–636.
- [9] B. Du, X. P. Hu, W. G. Ge, Positive solutions to a type of multi-point boundary value problem with delay and one-dimensional p-Laplacian, Appl. Math. Comput. 208 (2009), 501–510.
- [10] J. R. Graef, B. Yang, Positive solutions to a multi-point higher order boundary-value problem, J. Math. Anal. Appl. 316 (2006), 409–421.
- [11] J. H. Shen, J. Dong, Existence of positive solutions to BVPS of higher delay differential equations, Demonstratio Math. 42 (2009), 53–64
- [12] D. Guo, V. Lakshmikantham, Nonlinear Problems in Abstract Cones, Academic Press, New York, 1988.
- [13] J. Henderson, Boundary Value Problems for Functional Equations, World Scientific, 1995.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-da3a9b0e-ee72-48cf-a60b-9bbeb415b1b9