Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The Lamongan Regency is an area in East Java, Indonesia, which often experiences drought, especially in the south. The Corong River basin is located in the southern part of Lamongan, which supplies the irrigation area of the Gondang Reservoir. Drought monitoring in the Corong River basin is very important to ensure the sustainability of the agricultural regions. This study aims to analyse the causal relationship between meteorological and agricultural drought indices represented by standardised precipitation evapotranspiration index (SPEI) and standard normalisation difference vegetation index (NDVI), using time series regression. The correlation between NDVI and SPEI lag 4 has the largest correlation test results between NDVI and SPEI lag, which is 0.41. This suggests that the previous four months of meteorological drought impacted the current agricultural drought. A time series regression model strengthens the results, which show a causal relationship between NDVI and SPEI lag. According to the NDVI-SPEI-1 lag 4 time series model, NDVI was influenced by NDVI in the previous 12 periods, and SPEI-1 in the last four periods had a determinant coefficient value of 0.4. This shows that the causal model between SPEI-1 and NDVI shows a fairly strong relationship for drought management in agricultural areas (irrigated areas) and is considered a reliable and effective tool in determining the severity and duration of drought in the study area.
Wydawca
Czasopismo
Rocznik
Tom
Strony
178--188
Opis fizyczny
Bibliogr. 47 poz., mapy, tab., wykr.
Twórcy
autor
- Institut Teknologi Sepuluh Nopember, Faculty of Civil, Planning, and Geo Engineering, Department of Civil Engineering, ITS Civil Engineering Department, ITS Sukolilo Campus, Surabaya 60111, Indonesia
- Universitas Islam Lamongan, Faculty of Engineering, Department of Civil Engineering, Indonesia
autor
- Institut Teknologi Sepuluh Nopember, Faculty of Civil, Planning, and Geo Engineering, Department of Civil Engineering, ITS Civil Engineering Department, ITS Sukolilo Campus, Surabaya 60111, Indonesia
autor
- Institut Teknologi Sepuluh Nopember, Faculty of Civil, Planning, and Geo Engineering, Department of Civil Engineering, ITS Civil Engineering Department, ITS Sukolilo Campus, Surabaya 60111, Indonesia
autor
- Institut Teknologi Sepuluh Nopember, Faculty of Civil, Planning, and Geo Engineering, Department of Civil Engineering, ITS Civil Engineering Department, ITS Sukolilo Campus, Surabaya 60111, Indonesia
autor
- Institut Teknologi Sepuluh Nopember, Faculty of Science and Data Analytics, Department of Statistics, Surabaya, Indonesia
autor
- Institut Teknologi Sepuluh Nopember, Faculty of Civil, Planning, and Geo Engineering, Department of Civil Engineering, Department of Geomatics Engineering, Surabaya, Indonesia
autor
- IHE Delft, Institute for Water Education, Delft, The Netherlands
Bibliografia
- Adhyani, N.L., June, T. and Sopaheluwakan, A. (2017) “Exposure to drought: Duration, severity and intensity (Java, Bali and Nusa Tenggara),” IOP Conference Series: Earth and Environmental Science, 58, 012040. Available at: https://doi.org/10.1088/1755-1315/58/1/012040.
- AghaKouchak, A. (2015) “A multivariate approach for persistence-based drought prediction: Application to the 2010–2011 East Africa drought,” Journal of Hydrology, 526, pp. 127–135. Available at: https://doi.org/10.1016/j.jhydrol.2014.09.063.
- BBWS-Bengawan Solo (no date). Bengawan Solo River Center. Available at: https://hidrologi.bbws-bsolo.net/curahhujan (Accessed: July 20, 2023).
- Beguería, S. and Vicente-Serrano, S.M. (2017). SPEI: Calculation of the standardised precipitation-evapotranspiration index. R package version 1.7. Available at: https://CRAN.R-project.org/package=SPEI (Accessed: July 20, 2023).
- Benedict and Jaelani, L.M. (2021) “A long-term spatial and temporal analysis of NDVI changes in Java Island using Google Earth Engine,” IOP Conference Series: Earth and Environmental Science, 936(1), 012038. Available at: https://doi.org/10.1088/1755-1315/936/1/012038.
- BMKG (no date). Data online Pusat Database – BMKG. Badan Meteorologi Klimatologi dan Geofisika. Available at: https://dataonline.bmkg.go.id/home (Accessed: July 20, 2023).
- Chu, H.-J. (2018) “Drought detection of regional nonparametric standardized groundwater index,” Water Resources Management, 32(9), pp. 3119–3134. Available at: https://doi.org/10.1007/s11269-018-1979-4.
- Chu, H.-J. et al. (2021) “Time varying spatial downscaling of satellite-based drought index,” Remote Sensing, 13(18), 3693. Available at: https://doi.org/10.3390/rs13183693.
- Dhakar, R., Sehgal, V.K. and Pradhan, S. (2013) “Study on Inter-seasonal and intra-seasonal relationships of meteorological and agricultural drought indices in the Rajasthan State of India,” Journal of Arid Environments, 97, pp. 108–119. Available at: https://doi.org/10.1016/j.jaridenv.2013.06.001.
- Ezzine, H., Bouziane, A. and Ouazar, D. (2014) “Seasonal comparisons of meteorological and agricultural drought indices in Morocco using open short time-series data,” International Journal of Applied Earth Observation and Geoinformation, 26, pp. 36–48. Available at: https://doi.org/10.1016/j.jag.2013.05.005.
- Gidey, E. et al. (2018) “Using drought indices to model the statistical relationships between meteorological and agricultural drought in Raya and its environs, Northern Ethiopia,” Earth Systems and Environment, 2(2), pp. 265–279. Available at: https://doi.org/10.1007/s41748-018-0055-9.
- Guttman, N.B. (1998) “Comparing the Palmer drought index and the standardized precipitation index,” Journal of the American Water Resources Association, 34(1), pp. 113–121. Available at: https://doi.org/10.1111/j.1752-1688.1998.tb05964.x.
- Hargreaves, G.H. and Samani, Z.A. (1985) “Reference crop evapotranspiration from temperature,” Applied Engineering in Agriculture, 1(2), pp. 96–99. Available at: https://doi.org/10.13031/2013. 26773.
- Hartoyo, A.P.P. et al. (2021) “Normalized difference vegetation index (NDVI) analysis for vegetation cover in Leuser Ecosystem area, Sumatra, Indonesia,” Biodiversitas Journal of Biological Diversity, 22(3). Available at: https://doi.org/10.13057/biodiv/d220311.
- Hernandez, E.A. and Uddameri, V. (2014) “Standardized precipitation evaporation index (SPEI)-based drought assessment in semi-arid south Texas,” Environmental Earth Sciences, 71(6), pp. 2491–2501. Available at: https://doi.org/10.1007/s12665-013-2897-7.
- Himawan, A.H., Susanto, S. and Purwanta, H. (2021) “Eksplorasi Sejarah Sungai Bengawan Solo sebagai Salah Satu Materi Pembelajaran Sejarah Lokal di Sekolah Menengah Atas [Exploration of the history of the Bengawan Solo River as one of the local history learning materials in high school],” Jurnal Sejarah Citra Lekha, 6(2), pp. 119–129. Available at: https://doi.org/10.14710/jscl.v6i2.39907.
- Hobbins, M.T. et al. (2016) “The evaporative demand drought index. Part I: Linking drought evolution to variations in evaporative demand,” Journal of Hydrometeorology, 17(6), pp. 1745–1761. Available at: https://doi.org/10.1175/JHM-D-15-0121.1.
- Jia, S. et al. (2011) “A statistical spatial downscaling algorithm of TRMM precipitation based on NDVI and DEM in the Qaidam Basin of China,” Remote Sensing of Environment, 115(12), pp. 3069–3079. Available at: https://doi.org/10.1016/j.rse.2011.06.009.
- Kogan, F. (2002) “World droughts in the new millennium from AVHRR-based vegetation health indices,” Eos, Transactions American Geophysical Union, 83(48), 557. Available at: https://doi.org/10.1029/2002EO000382.
- Lesk, C., Rowhani, P. and Ramankutty, N. (2016) “Influence of extreme weather disasters on global crop production,” Nature, 529(7584), pp. 84–87. Available at: https://doi.org/10.1038/nature16467.
- Lillesand, T., Kiefer, R.W. and Chipman, J. (1997) Remote sensing and image interpretation. New York: Wiley.
- Liu, Q. et al. (2020) “Monitoring drought using composite drought indices based on remote sensing,” Science of The Total Environment, 711, 134585. Available at: https://doi.org/10.1016/j.scitotenv.2019.134585.
- Lweendo, M. et al. (2017) “Characterization of droughts in humid subtropical region, upper Kafue River basin (Southern Africa),” Water, 9(4), 242. Available at: https://doi.org/10.3390/w9040242.
- Maina, M.P. (2018) Drought monitoring and assessment using remote sensing. Available at: https://library.itc.utwente.nl/papers_2018/msc/wrem/muiruri.pdf (Accessed: July 18, 2023).
- Metcalfe, A.V. and Cowpertwait, P.S.P. (2009) Introductory Time Series with R. Springer New York. Available at: https://doi.org/10.1007/978-0-387-88698-5.
- Mikaili, O. and Rahimzadegan, M. (2022) “Investigating remote sensing indices to monitor drought impacts on a local scale (case study: Fars province, Iran),” Natural Hazards, 111(3), pp. 2511–2529. Available at: https://doi.org/10.1007/s11069-021-05146-1.
- Mishra, A.K. and Singh, V.P. (2010) “A review of drought concepts,” Journal of Hydrology, 391(1–2), pp. 202–216. Available at: https://doi.org/10.1016/j.jhydrol.2010.07.012.
- Nicolai-Shaw, N. et al. (2017) “A drought event composite analysis using satellite remote-sensing based soil moisture,” Remote Sensing of Environment, 203, pp. 216–225. Available at: https://doi.org/10.1016/j.rse.2017.06.014.
- Nuf’a, H., Limantara, L.M. and Soetopo, W. (2016) “Optimasi air waduk Gondang dengan metode dinamik deterministik [Optimization of Gondang Reservoir Water using deterministic dynamic method],” Jurnal Teknik Pengairan: Journal of Water Resources Engineering, 7(1), pp. 25–36.
- Orimoloye, I.R. et al. (2022) “Drought: A common environmental disaster,” Atmosphere, 13(1), 111. Available at: https://doi.org/10.3390/atmos13010111.
- Portela, M.M. et al. (2017) “Comprehensive characterization of droughts in Slovakia,” International Journal of Environmental Science and Development, 8(1), pp. 25–29. Available at: https://doi.org/10.18178/ijesd.2017.8.1.915.
- Prabhu, TL (2021) Agricultural engineering: An introduction to agricultural engineering. Kanyakumari: Nestfame Creations Pvt.
- R Core Team (2021) R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.
- Schober, P., Boer, C. and Schwarte, L.A. (2018) “Correlation coefficients,” Anesthesia & Analgesia, 126(5), pp. 1763–1768. Available at: https://doi.org/10.1213/ANE.0000000000002864.
- Spracklen, D.V. et al. (2018) “The effects of tropical vegetation on rainfall,” Annual Review of Environment and Resources, 43(1), pp. 193–218. Available at: https://doi.org/10.1146/annurev-environ-102017-030136.
- Stagge, J. et al. (2014) “Standardized precipitation–evapotranspiration index (SPEI): sensitivity to potential evapotranspiration model and parameters,” Hydrology in a Changing World: Environmental and Human Dimensions, IAHS Publications, 363, pp. 367–373.
- Tirivarombo, S., Osupile, D., and Eliasson, P. (2018) “Drought monitoring and analysis: standardised precipitation evapotranspiration index (SPEI) and standardised precipitation index (SPI),” Physics and Chemistry of the Earth, Parts A/B/C, 106, pp. 1–10. Available at: https://doi.org/10.1016/j.pce.2018.07.001.
- Touhami, I. et al. (2022) “Multi-year monitoring land surface phenology in relation to climatic variables using MODIS-NDVI time-series in Mediterranean forest, Northeast Tunisia,” Acta Oecologica, 114, 103804. Available at: https://doi.org/10.1016/j.actao.2021.103804.
- Trenberth, K.E. and Shea, D.J. (2005) “Relationships between precipitation and surface temperature,” Geophysical Research Letters, 32(14), pp. 1–4. Available at: https://doi.org/10.1029/2005GL022760.
- Tukimat, N.N.A., Harun, S. and Shahid, S. (2012) “Comparison of different methods in estimating potential evapotranspiration at Muda Irrigation Scheme of Malaysia,” Journal of Agriculture and Rural Development in the Tropics and Subtropics, 113(1), pp. 77–85.
- Vähänen, T. (2022) Droughts will change our world unless we act now. Available at: https://Sdg.Iisd.Org/Commentary/Guest-Articles/Droughts-Will-Change-Our-World-Unless-We-Act-Now/ (Accessed: July 18, 2023).
- Vicente-Serrano, S.M., Beguería, S. and López-Moreno, J.I. (2010) “A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index,” Journal of Climate, 23(7), pp. 1696–1718. Available at: https://doi.org/10.1175/2009JCLI2909.1.
- Wan, Z., Wang, P. and Li, X. (2004) “Using MODIS land surface temperature and normalized difference vegetation index products for monitoring drought in the southern Great Plains, USA,” International Journal of Remote Sensing, 25(1), pp. 61–72. Available at: https://doi.org/10.1080/0143116031000115328.
- Wang, D. et al. (2011) “Climate change impact on meteorological, agricultural, and hydrological drought in central Illinois,” Water Resources Research, 47(9), W09527. Available at: https://doi.org/10.1029/2010WR009845.
- Yasa, I.W. et al. (2018) “Hydrological drought index based on reservoir capacity – Case study of Batujai dam in Lombok Island, West Nusa Tenggara, Indonesia,” Journal of Water and Land Development, 38(1), pp. 155–162. Available at: https://doi.org/10.2478/jwld-2018-0052.
- Zargar, A. et al. (2011) “A review of drought indices,” Environmental Reviews, 19. Available at: https://doi.org/10.1139/a11-013.
- Zuo, D. et al. (2019) “Assessment of meteorological and agricultural droughts using in-situ observations and remote sensing data,” Agricultural Water Management, 222, pp. 125–138. Available at: https://doi.org/10.1016/j.agwat.2019.05.046.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-da3803a6-54c2-426d-82f0-ac4f26fff1fe