Identyfikatory
Warianty tytułu
Grafen – nanomateriał do wytwarzania nowej generacji membran półprzepuszczalnych
Języki publikacji
Abstrakty
In recent decades, novel and promising materials (e.g. carbon nanotubes, nanoporous graphene and graphene oxide) suitable to be used in preparation of high-capacity membranes for water desalination and water and wastewater treatment have been developed. Membranes made of NPG and GO materials enable to obtain significantly higher water/permeate fluxes than currently used thin film composite membranes for RO and other separation processes as pervaporation, forward osmosis, capacitive deionization, electrodialysis, or in formation of photocatalytic membranes. Novel composite membrane containing NPG and GO can be divided into freestanding membranes (prepared only from NPF/GO), and polymeric/ceramic membranes modified with the use of graphene-based nanomaterials. Modification of polymeric membranes can be achieved either by introduction of a nanomaterial onto a membrane surface or to a membrane casting solution followed by membrane formation from a polymer and a nanomaterial mixture. The future development of NPG/GO containing membranes should focus on the improvement of their separation features. A lot of effort has to be given to understand and properly explain both, role and interaction mechanisms of graphene-based nanomaterial with a membrane, especially in case of freestanding graphene oxide membranes. GO nanosheets are very promising material for manufacturing of desalination membranes, however more attention has to be dedicated to potential disadvantages such as mechanical instability, nanosheets formation, non-uniform distribution of layers and surface damage. Additionally, the scaling up required for commercial production of ultra-thin membranes of high permeability, based on graphene-oxide, is one of the greatest challenge for scientists and engineers. The success reached in this area will lead to the decrease in energy consumption in RO installation and in other membrane processes. Moreover, the release of nanomaterial from such membranes and their potential toxicity has to be investigated in detail for their further practical use in desalination processes.
W ostatnich dziesięcioleciach opracowano nowe i obiecujące materiały (np. nanorurki węglowe, nanoporowaty grafen i tlenek grafenu) odpowiednie do wytwarzania membran o wysokiej efektywności odsalania i uzdatniania wody i oczyszczania ścieków. Membrany wykonane z NPG i GO pozwalają na osiągnięcie znacznie wyższej wydajności wody/permeatu, niż obecnie stosowane membrany kompozytowe cienkowarstwowe do RO i innych procesów separacji, jak np. perwaporacji, osmozy prostej, dejonizacji pojemnościowej, elektrodializy, lub membran fotokatalitycznych. Nowe membrany kompozytowe zawierające NPG i GO można podzielić na membrany „wolnostojące” (wykonane tylko NPF/GO) i membrany polimerowe/ceramiczne modyfikowane za pomocą nanomateriałów z grafenu. Modyfikację membran polimerowych można osiągnąć albo przez wprowadzenie nanomateriałów na powierzchnię membrany lub do roztworu błonotwórczego, z którego wytwarza się membrany metodą inwersji fazowej. Rozwój membran zawierających NPG/GO powinien koncentrować się na poprawieniu ich własności separacyjnych. Należy uwagę skierować na zrozumienie i prawidłowe wyjaśnienie zarówno roli i mechanizmów interakcji nanomateriału na bazie grafenu z membraną, zwłaszcza w przypadku membran „wolnostojących”. Nano-arkusze GO są bardzo obiecującym materiałem do wytwarzania membran do odsalania wody, należy jednak więcej uwagi zwrócić na potencjalne wady takie jak niestabilność mechaniczna, tworzenie nano-arkuszy, nierównomierny rozkład warstw i uszkodzenia powierzchni. Ponadto, należy rozwiązać powiększanie skali wytwarzania membran, co jest wymagane dla komercjalizacji produkcji membran opartych na grafenie i tlenku grafenu oraz stanowi jedno z największych wyzwań dla naukowców i inżynierów. Sukces osiągnięty w tej dziedzinie doprowadzi do zmniejszenia zużycia energii w instalacji RO i innych procesach membranowych. Należy również szczegółowo zbadać proces uwolnienia nanomateriału z membran i jego potencjalną toksyczność, z uwagi na bezpieczeństwo stosowania membran zawierających nanomateriały.
Wydawca
Czasopismo
Rocznik
Tom
Strony
112--140
Opis fizyczny
Bibliogr. 100 poz., tab., rys.
Twórcy
autor
- Institute of Environmental Engineering of Polish Academy of Sciences, Zabrze, Poland
autor
- The Cardinal Wyszynski University in Warsaw, Poland
Bibliografia
- 1. Aba, N.F.D., Chong, J.Y., Wang, B., Mattevi, C., Li, K. (2015). Graphene oxide membranes on ceramic hollow fibers – Microstructural stability and nanofiltration performance. J. Membr. Sci., 484, 87-94.
- 2. Abraham, J., Vasu, K.S., Williams, C.D., Gopinadhan, K., Su, Y., Cherian, C.T., Dix, J., Prestat, E., Haigh, S.J., Grigorieva, I.V., Carbone, P., Geim, A.K., Nai,r R.R. (2017). Tunable sieving of ions using graphene oxide membranes. Nat. Nanotechnol. 12,546-550.
- 3. Aghigh, A., Alizadeh, V., Wong, H.Y., Islam Md.S., Amin, N., Zaman, M. (2015). Recent advances in utilization of graphene for filtration and desalination of water: A review. Desalination, 365, 389-397.
- 4. Akhavan O., Ghaderi E.(2010). Toxicity of graphene and graphene oxide nanowalls against bacteria. ACS Nano, 4, 5731-5736.
- 5. Ali, M.E.A., Wang, L., Wang, X., Feng, X. (2016). Thin film composite membranes embedded with graphene oxide for water desalination. Desalination, 386, 67-76.
- 6. Anand, A., Unnikrishnan, B., Mao, J.-Y., Lin, H.-J., Huang, C.-C. (2018). Graphene- based nanofiltration membranes for improving salt rejection, water flux and anti-fouling – A review. Desalination, 429, 119-133.
- 7. Basile, A., Cassano, A., Rastogi N. (2015). Advances in Membrane Technologies for Water Treatment, Amsterdam, Elsevier.
- 8. Bano, S., Mahmood, A., Kim, S.-J., Lee, K.-H. (2015). Graphene oxide modified poly- amide nanofiltration membrane with improved flux and antifouling properties. J. Mater. Chem. A, 3, 2065-2071.
- 9. Becton, M., Zhang, L., Wang, X. (2014). Molecular Dynamics Study of Programmable Nanoporous Graphene, J. Nanomech., Micromech. 4, B4014002.
- 10. Chae, H.-R., Lee, J., Lee, C.-H., Kim, I.-C., Park, P.-K. (2015). Graphene oxide-embedded thin film composite reverse osmosis membrane with high flux, anti-biofouling, and chlorine resistance. J. Membr. Sci., 483, 128-135.
- 11. Chen, L., Shi, G., Shen, J., Peng, B., Zhang, B., Wang, Y., Bian, F., Wang, J., Li, D., Qian, Z., Xu, G., Liu, G., Zeng, J., Zhang, L., Yang, Y., Zhou, G., Wu, M., Jin, W., Li, J., Fang, H. (2017b). Ion sieving in graphene oxide membranes via cationic control of interlayer spacing. Nature, 550, 380.
- 12. Chen, X., Liu, G., Zhang, H., Fan, Y. (2015). Fabrication of graphene oxide composite membranes and their application for pervaporation dehydration of butanol. Chin.J. Chem. Eng., 23, 1102-1109.
- 13. Chen, X., Qiu, M., Ding, H., Fu, K., Fan, Y. (2016). A reduced graphene oxide nano filtration membrane intercalated by well-dispersed carbon nanotubes for drinking water purification. Nano, 8, 5696-5705.
- 14. Cho, W. & Lee, J.-W. (2011). Graphene: Synthesis and Applications, Taylor and Francis, Hoboken.
- 15. Choi, W., Choi, J., Bang, J., Lee, J.-H. (2013). Layer-by-layer assembly of graphene oxide nanosheets on polyamide membranes for durable reverse-osmosis applications. ACS Appl. Mater. Interfaces, 5, 12510-12519.
- 16. Chung, Y.T., Mahmoudi, E., Mohammad, A.W., Benamor A., Johnson, D., Hilal, N. (2017). Development of polysulfone-nanohybrid membranes using ZnO-GO compo- site for enhanced antifouling and antibacterial control. Desalination, 402, 123-132.
- 17. Cohen-Tanugi, D., Grossman, J.C. (2012). Water desalination across nanoporous graphene. Nano Lett., 12, 3602-3608.
- 18. Cohen-Tanugi D., Grossman J.C. (2015). Nanoporous graphene as a reverse osmosis membrane: recent insights from theory and simulation. Desalination, 366, 59-70.
- 19. Cohen-Tanugi, D., McGovern, R.K., Dave, S.H., Lienhard, J.H., Grossman, J.C. (2014). Quantifying the potential of ultra-permeable membranes for water desalination. Energy Environ. Sci., 7, 1134-1141.
- 20. Compton, O.C. & Nguyen S.T. (2010). Graphene Oxide, Highly Reduced Graphene Ox- ide, and Graphene: Versatile Building Blocks for Carbon-Based Materials. Small, 6, 711-723.
- 21. Dai, H., Xu, Z., Yang, X. (2016). Water permeation and ion rejection in layer-by-layer stacked graphene oxide nanochannels: a molecular dynamics simulation. J. Phys. Chem. C, 120, 22585-22596.
- 22. Decher, G., Eckle, M., Schmitt, J., Strut, B. (1998). Layer-by-layer assembled multicomposite films. Current Opinion in Colloid & Interface Science, 3, 32-39.
- 23. Dikin, D.A., Stankovich, S., Zimney, E.J., Piner, R.D., Dommett, G.H.B., Evmenenko, G., Nguyen, S.T., Ruoff, R.S. (2007). Preparation and characterization of graphene oxide paper. Nature, 448, 457-460.
- 24. Dimiev, A.M., Alemany, L.B., Tour, J.M. (2013). Graphene oxide. Origin of acidity, its instability in water, and a new dynamic structural model. ACS Nano, 7, 576-588.
- 25. Duan, L., Wang, Y., Zhang, Y., Liu, J. (2015). Graphene immobilized enzyme/polyeth-ersulfone mixed matrix membrane: enhanced antibacterial, permeable and mechanical properties. Appl. Surf. Sci., 355, 436-445.
- 26. Eda, G. & Chhowalla, M. (2010). Chemically derived graphene oxide: towards large-area thin-film electronics and optoelectronics. Adv. Mater., 22, 2392-2415.
- 27. Elimelech M., Phillip W.A. (2011). The future of seawater desalination: energy, technology, and the environment. Science, 333, 712-717.
- 28. Fischbein, M.D. & Drndić, M.D.F.A. (2008). Electron beam nanosculpting of suspended graphene sheets. Appl. Phys. Lett., 93, 113107.
- 29. Fryczkowska, B. (2018). The application of ultrafiltration composite GO/PAN membranes for removing dyes from textile wastewater. Desalin. Water Treatment, 128, 79-88.
- 30. Ganesh, B.M., Isloor, A.M., Ismail, A.F. (2013). Enhanced hydrophilicity and salt rejection study of graphene oxide-polysulfone mixed matrix membrane. Desalination, 313, 199-207.
- 31. Gao, Y., Hu, M., Mi, B. (2014). Membrane surface modification with TiO2-graphene ox- ide for enhanced photocatalytic performance. J. Membr. Sci., 455, 349-356.
- 32. Goh, P.S., Ismail, A.F., Hilal, N. (2016). Nano-enabled membranes technology: Sustainable and revolutionary solutions for membrane desalination? Desalination, 380, 100-104.
- 33. Han, Y., Xu, Z., Gao, C. (2013). Ultrathin graphene nanofiltration membrane for water purification. Adv. Funct. Mater., 23, 3693-3700.
- 34. Hegab, H.M., Zou, L. (2015). Graphene oxide-assisted membranes: Fabrication and potential applications in desalination and water purification. J. Membr. Sci., 484, 95-106.
- 35. Hu, M. & Mi, B. (2013). Enabling graphene oxide nanosheets as water separation mem- branes. Environ. Sci. Technol., 47, 3715-3723.
- 36. Hu, M. & Mi, B. (2014). Layer-by-layer assembly of graphene oxide membranes via electrostatic interaction. J. Membr. Sci., 469, 80-87.
- 37. Hu, W., Peng, C., Luo, W., Lv, M., Li, X., Li, D. (2010). Graphene-based antibacterial paper. ACS Nano 4, 4317-4323.
- 38. Huang, H., Song, Z., Wei, N., Shi, L., Mao, Y., Ying, Y., Sun, L., Xu, Z., Peng, X. (2013). Ultrafast viscous water flow through nanostrand-channelled graphene oxide mem- branes. Nat. Commun,. 4, 2979.
- 39. Huang, H., Ying, Y., Peng, X. (2014). Graphene oxide nanosheet: an emerging star ma- terial for novel separation membranes. J. Mater. Chem. A, 2, 13772-13782.
- 40. Hung, W.-S., An, Q.-F., De Guzman, M., Lin, H.-Y., Huang, S.-H., Liu, W.-R., Hu, C.-C., Lee, K.-R., Lai, J.-Y. (2014). Pressure-assisted self-assembly technique for fabricating composite membranes consisting of highly ordered selective laminate layers of amphiphilic graphene oxide. Carbon, 68, 670-677.
- 41. Jiang, Y., Wang, W., Liu, D., Nie, Y., Li, W., Wu, J., Zhang, F., Biswas, P., Fortner, J.D. (2015). Engineered crumpled graphene oxide nanocomposite membrane assemblies for advanced water treatment processes. Environ. Sci. Technol., 49, 6846-6854.
- 42. Joshi, R.K., Carbone, P., Wang, F.C., Kravets, V.G., Su, Y., Grigorieva, I.V., Wu, H.A., Geim, A.K., Nair, R.R. (2014). Precise and ultrafast molecular sieving through gra- phene oxide membranes. Science, 343, 752-754.
- 43. Kim, S.G., Hyeon, D.H., Chun, J.H., Chun, B.-H., Kim, S.H. (2013). Novel thin nanocomposite RO membranes for chlorine resistance. Desalin. Water Treat., 51, 6338-6345.
- 44. Kochkodan, V., Johnson, D.J., Hilal, N. (2014). Polymeric membranes: surface modification for minimizing (bio)colloidal fouling. Adv. Colloid Interf. Sci., 206, 116-140.
- 45. Koenig, S.P., Wang, L., Pellegrino, J., Brunch, J.S.(2012). Selective molecular sieving through porous graphene. Nat. Nanotechnol., 10, 1038.
- 46. Lai, G.S., Lau, W.J., Goh, P.S., Ismail, A.F., Yusof, N., Tan, Y.H. (2016). Graphene oxide incorporated thin film nanocomposite nanofiltration membrane for enhanced salt removal performance. Desalination, 387, 14-24.
- 47. Lee, C., Wei, X., Kysar, J.W., Hone, J. (2008). Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 321, 385-388.
- 48. Lee, J., Chae, H.-R., Won, Y.J., Lee, K., Lee, C.-H., Lee, H.H., Kim, I.-C., Lee, J.-M. (2013). Graphene oxide nanoplatelets composite membrane with hydrophilic and antifouling properties for wastewater treatment. J. Membr. Sci., 448, 223-230.
- 49. Lee, K.P., Arnot, T.C., Mattia, D. (2011). A review of reverse osmosis membrane materials for desalination—development to date and future potential. J. Membr. Sci., 370, 1-22.
- 50. Liu, S., Zeng, T.H., Hofmann, M., Burcombe, E., Wei, J., Jiang, R., (2011). Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: membrane and oxidative stress. ACS Nano, 5, 6971-6980.
- 51. Ma, W., Soroush, A., Van Luong, T., Rahaman, S. (2017). Cysteamine- and graphene oxide-mediated copper nanoparticle decoration on reverse osmosis membrane for enhanced anti-microbial performance. J. of Colloid and Interface Science, 501, 330-340.
- 52. Mahmoudi, E., Ng, L.Y., Ba-Abbad, M.M., Mohammad, A.W. (2015). Novel nanohybrid polysulfone membrane embedded with silver nanoparticles on graphene oxide nanoplates. Chem. Eng. J., 277, 1-10.
- 53. Manawi, Y., Kochkodan, V., Ali-Hussein, M., Khaleel, M.A., Khraisheh, M., Hilal, N. (2016). Can carbon-based nanomaterials revolutionize membrane fabrication for water treatment and desalination? Desalination, 391, 69-88.
- 54. Marinho, B., Ghislandi, M., Tkalya, E., Koning, C.E., deWith, G. (2012). Electrical conductivity of compacts of graphene, multi-wall carbon nanotubes, carbon black, and graphite powder. Powder Technol., 221, 351-358.
- 55. Matin, A., Khan, Z., Zaidi, S.M.J., Boyce, M.C. (2011). Biofouling in reverse osmosis membranes for seawater desalination: phenomena and prevention. Desalination, 281, 1-16.
- 56. Mi, B. (2014). Graphene Oxide Membranes for Ionic and Molecular Sieving. Science, 343, 740-742.
- 57. Montgomery, M.A., Elimelech, M. (2007). Water and sanitation in developing countries: including health in the equation. Environ. Sci. Technol., 41, 17-24.
- 58. Nair, R., Wu, H., Jayaram, P., Grigorieva, I., Geim, A. (2012). Unimpeded permeation of water through helium-leak-tight graphene-based membranes. Science, 335, 442-444.
- 59. Nicolaï, A., Sumpter, B.G., Meunier, V. (2014). Tunable water desalination across Graphene oxide framework membranes. Phys. Chem. Chem. Phys., 16, 8646-8654.
- 60. Ouyang, G., Hussain, A., Li, J., Li, D. (2015). Remarkable permeability enhancement of polyethersulfone (PES) ultrafiltration membrane by blending cobalt oxide/Graphene oxide nanocomposites. RSC Adv., 5, 70448-70460.
- 61. Park, M.J., Phuntsho, S., He, T., Nisola, G.M., Tijing, L.D., Li, X.-M., Chen, G., Chung, W.-J., Shon, H.K. (2015). Graphene oxide incorporated polysulfone substrate for the fabrication of flat-sheet thin-film composite forward osmosis membranes. J. Membr. Sci., 493, 496-507.
- 62. Perreault, F., Tousley, M.E., Elimelech, M. (2014). Thin-film composite polyamide mem-branes functionalized with biocidal graphene oxide nanosheets. Environ. Sci.Technol. Lett., 1, 71-76.
- 63. Prince, J.A., Bhuvana, S., Anbharasi, V., Ayyanar, N., Boodhoo, K.V.K., Singh, G. (2016). Ultra-wetting graphene-based membrane. J. Membr. Sci., 500, 76-85.
- 64. Safarpour, M., Khataee, A., Vatanpour, V. (2015a). Thin film nanocomposite reverse osmosis membrane modified by reduced graphene oxide/TiO2 with improved desalination performance. J. Membr. Sci., 489, 43-54.
- 65. Safarpour, M., Vatanpour, V., Khataee, A., Esmaeili, M. (2015b). Development of a novel high flux and fouling-resistant thin film composite nanofiltration membrane by embedding reduced graphene oxide/TiO2. Sep. Purif. Technol., 154, 96-107.
- 66. Songa, N., Gao, X., Mac, Z., Wanga, X., Weia, Y., Gao, C. (2018). A review of graphene- based eparation membrane: Materials, characteristics, preparation and applications. Desalination, 37, 59-7.
- 67. Suk, M.E. & Aluru, N.R. (2010). Water transport through ultrathin graphene. J. Phys. Chem.Lett., 1, 1590-1594.
- 68. Sun, P., Zhu, M., Wang, K., Zhong, M., Wei, J., Wu, D., Xu, Z., Zhu, H. (2012). Selective ion penetration of graphene oxide membranes. ACS Nano, 7, 428-437.
- 69. Sun, X.-F., Qin, J., Xia, P.-F., Guo, B.-B., Yang, C.-M., Song, C., Wang, S.-G. (2015). Graphene oxide-silver nanoparticle membrane for biofouling control and water purification. Chem. Eng. J., 281, 53-59.
- 70. Teli, S.B., Molina, S., Calvo, E.G., Lozano, A.E., de Abajo, J. (2012). Preparation, characterization and antifouling property of polyethersulfone-PANI/PMA ultrafiltration membranes. Desalination, 299, 113-122.
- 71. Tu, Y., Lv, M., Xiu, P., Huynh, T., Zhang, M., Castelli M. (2013). Destructive extraction of phospholipids from Escherichia coli membranes by graphene nanosheets. Nat.Nanotechnol., 8, 594-601.
- 72. Vatanpour, V., Shockravi, A., Zarrabi, H., Nikjavan, Z., Javadi, A. (2015). Fabrication and characterization of anti-fouling and anti-bacterial Ag-loaded graphene ox- ide/polyethersulfone mixed matrix membrane. J. Ind. Eng. Chem., 30, 342-352.
- 73. Voulkov, L. (2018). Energy use for membrane seawater desalination – current status and trends. Desalination, 431, 2-14.
- 74. Wang, E.N. & Karnik, R. (2012). Graphene cleans up water. Nat. Nanotechnol., 7, 552- 554.
- 75. Wang, N., Ji, S., Zhang, G., Li, J., Wang, L. (2012b). Self-assembly of graphene oxide and polyelectrolyte complex nanohybrid membranes for nanofiltration and pervapo- ration. Chem. Eng. J., 213, 318-329.
- 76. Wang, Z., Yu, H., Xia, J., Zhang, F., Li, F., Xia, Y., Li, Y. (2012c). Novel GO-blended PVDF ultrafiltration membranes. Desalination, 299, 50-54.
- 77. Wang, H., Yuan, X., Wu, Y., Huang, H., Peng, X., Zeng, G., Zhong, H., Liang, J., Ren, M. (2013). Graphene-based materials: fabrication, characterization and application for the decontamination of wastewater and waste gas and hydrogen storage/generation. Adv. Colloid Interf. Sci., 195-196, 19-40.
- 78. Wang, J., Gao, X., Wang, J., Wei, Y., Li, Z., Gao, C. (2015). O-(Carboxymethyl)- chitosan nanofiltration membrane surface functionalized with graphene oxide nanosheets for enhanced desalting properties. ACS Appl. Mater. Interfaces, 7, 4381-4389.
- 79. Wang, J., Zhang, P., Liang, B., Liu, Y., Xu, T., Wang, L., Cao, B., Pan, K. (2016a). Gra- phene oxide as an effective barrier on a porous nanofibrous membrane for water treatment. ACS Appl. Mater. Interfaces, 8, 6211-6218.
- 80. Wang, J., Zhao, C., Wang, T., Wu, Z., Li, X., Li, J. (2016b). Graphene oxide polypipera- zineamide nanofiltration membrane for improving flux and anti-fouling in water purification. RSC Adv., 6, 82174-82185.
- 81. Wei, N., Peng, X., Xu, Z. (2014). Understanding water permeation in graphene oxide membranes. ACS Appl. Mater. Interfaces, 6, 5877-5883.
- 82. Werber, J.R., Osuji, C.O., Elimelech, M. (2016). Materials for next-generation desalination and water purification membranes. Nat. Rev. Mater., 1, Article number: 16018.
- 83. Wu Q., Chen G.-E., Sun W.-G., Xu Z.-L., Konga Y.-F., Zheng X.-P., Xu S.-J. (2017). Bio-inspired GO-Ag/PVDF/F127 membrane with improved anti-fouling for natural organic matter (NOM) resistance. Chem. Eng. J., 313, 450-460.
- 84. Xia, S. & Ni, M. (2015). Preparation of poly(vinylidene fluoride) membranes with graphene oxide addition for natural organic matter removal. J. Membr. Sci., 473, 54-62.
- 85. Xu, C., Cui, A., Xu, Y., Fu, X. (2013). Grapheneoxide-TiO2 composite filtration mem- branes and their potential application for water purification. Carbon, 62, 465-471.
- 86. Xu, Z., Zhang, J., Shan, M., Li, Y., Li, B., Niu, J., Zhou, B., Qian, X. (2014). Organosilane functionalized graphene oxide for enhanced antifouling and mechanical properties of polyvinylidene fluoride ultrafiltration membranes. J. Membr. Sci., 458, 1-13.
- 87. Xu, Y., Gao, X., Wang, Q., Wang, X., Ji, Z., Gao, C. (2016a). Highly stable MIL-101(Cr) doped water permeable thin film nanocomposite membranes for water treatment. RSC Adv., 6, 82669-82675.
- 88. Xu, K., Feng, B., Zhou, C., Huang A. (2016b). Synthesis of highly stable graphene oxide membranes on polydopamine functionalized supports for seawater desalination. Chem. Eng. Sci., 146, 159-165.
- 89. Xu, W.L., Fang, C., Zhou, F., Song, Z., Liu, Q., Qiao, R., Yu, M. (2017). Self-assembly: a facile way of forming ultrathin, high-performance graphene oxide membranes for water purification. Nano Lett., 17, 2928-2933.
- 90. Yang, Z., Ma, X.-H, Tang, C.Y. (2018). Recent development of novel membranes for desalination. Desalination, 434, 37-59.
- 91. Yin, J., Zhu, G., Deng, B. (2016). Graphene oxide (GO) enhanced polyamide (PA) thin-film nanocomposite (TFN) membrane for water purification. Desalination, 379, 93-101.
- 92. Yu, L., Zhang, Y., Zhang, B., Liu, J., Zhang, H., Song, C. (2013). Preparation and char- acterization of HPEI-GO/PES ultrafiltration membrane with antifouling and anti- bacterial properties. J. Membr. Sci., 447, 452-462.
- 93. Yuan, Y., Gao, X., Wei, Y., Wang, X., Wang, J., Zhang, Y., Gao, C. (2017). Enhanced desalination performance of carboxyl functionalized graphene oxide nanofiltration membranes. Desalination, 405, 29-39.
- 94. Zhang, J., Xu, Z., Shan, M., Zhou, B., Li, Y., Li, B., Niu, J., Qian, X. (2013). Synergetic effects of oxidized carbon nanotubes and graphene oxide on fouling control and anti-fouling mechanism of polyvinylidene fluoride ultrafiltration membranes. J. Membr. Sci., 448, 81-92.
- 95. Zhao, C., Xu, X., Chen, J., Yang, F. (2013a). Effect of graphene oxide concentration on the morphologies and antifouling properties of PVDF ultrafiltration membranes. J. Environ. Chem. Eng., 1, 349-354.
- 96. Zhao, H., Wu, L., Zhou, Z., Zhang, L., Chen, H. (2013b). Improving the antifouling property of polysulfone ultrafiltration membrane by incorporation of isocyanate-treated Graphene oxide. Phys. Chem. Chem. Phys., 15, 9084-9092.
- 97. Zhao, H, Qiu, S, Wu, L, Zhang, L, Chen ,H, Gao, C.(2014a). Improving the performance of polyamide reverse osmosis membrane by incorporation of modified multi-walled carbon nanotubes. J.Membr. Sci.,450, 249-256.
- 98. Zhao, C., Xu X., Chen, J., Yang, F. (2014b). Optimization of preparation conditions of poly(vinylidene fluoride)/graphene oxide microfiltration membranes by the Taguchi experimental design. Desalination, 334, 17-22.
- 99. Zhao, J., Zhu, Y., Pan, F., He, G., Fang, C., Cao, K., Xing, R., Jiang, Z. (2015). Fabricating graphene oxide-based ultrathin hybrid membrane for pervaporation dehydration via layer-by-layer self-assembly driven by multiple interactions. J. Membr. Sci., 487, 162-172.
- 100. Zinadini, S., Zinatizadeh, A.A., Rahimi, M., Vatanpour, V., Zangeneh, H. (2014). Preparation of a novel antifouling mixed matrix PES membrane by embedding graphene oxide nanoplates. J. Membr. Sci., 453, 292-301.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-da374602-7a14-49d4-9ef5-1b757c0bb1e5