PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Contribution to the Modeling of the Organic Matter of Moroccan Forest Soils within the Context of Global Change – Case Study of the Central Plateau

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Organic matter is a major component of soil. It is of considerable ecological importance given its role in determining soil health, influencing ecosystem productivity and climate. For this reason, it is essential to carry out studies to evaluate its dynamics in natural ecosystems. In this study, the authors aimed to explore the dynamics of soil organic matter (SOM) in forest ecosystems of the Central Plateau in Morocco, as well as to investigate the potential of spectral vegetation indices in modeling SOM. To this end, the soil samples for analysis were collected from 30 sites across three vegetation types, including cork oak, Barbary thuja and scrub (matorral). In addition, the normalized difference vegetation index (NDVI) was extracted from Landsat 8 images to be used to model SOM using linear regression. The obtained results showed a weak, although statistically significant (α < 0.05), correlation between NDVI and SOM at 0.45. In addition, only the scrub type showed a statistically significant (α < 0.05) relationship between its corresponding SOM and NDVI, and was therefore retained for modeling. Vegetation type had a statistically strong influence (α <0.01) on SOM, with cork oak and garrigue ecosystems having the highest and lowest SOM contents with 5.61% and 2.36%, respectively. In addition, the highest SOM contents were observed under slightly acidic pH soils on mild, warm slopes at high altitude sites, while the lowest were found in lowland areas with predominantly weakly evolved soil.
Słowa kluczowe
Twórcy
  • Equipe Sciences Géomatiques (SGEO), Laboratoire du Génie des Systèmes (LAGES), Ecole Hassania des Travaux Publics (EHTP), Casablanca, Morocco
  • Laboratoire de Biotechnologie et Physiologie Végétales, Centre de Biotechnologie Végétale et Microbienne Biodiversité et Environnement, Faculté des Sciences, Université Mohammed V de Rabat, Rabat 10000, Morocco
  • Equipe Sciences Géomatiques (SGEO), Laboratoire du Génie des Systèmes (LAGES), Ecole Hassania des Travaux Publics (EHTP), Casablanca, Morocco
autor
  • Equipe Sciences Géomatiques (SGEO), Laboratoire du Génie des Systèmes (LAGES), Ecole Hassania des Travaux Publics (EHTP), Casablanca, Morocco
autor
  • Laboratoire des Productions Végétale, Animales et Agro-industrie, Equipe de Botanique, Biotechnologie et Protection des Plantes, Faculté des Sciences, Université Ibn Tofail, Kénitra, Morocco
  • Unit of Biodiversity and Valorization of Plant Resources, Faculty of Science and Technology - University of Nouakchott, Mauritania
  • Independent Researcher, Rabat, Morocco
  • Laboratoire d’aménagement et de sylviculture, Département de biologie, chimie et géographie, Université de Québec à Rimouski, Canada
  • Soltane Moulay Slimane University, Mghila Beni Mellal, Morocco
  • Interdisciplinary Laboratory LIRBEM, Department of Life and Earth Sciences, Ecole Normale Supérieure, Cadi Ayyad University, Marrakech, Morocco
Bibliografia
  • 1. Amundson R., Berhe A.A., Hopmans J.W., Olson C., Sztein A.E., Sparks D.L. 2015. Soil and human security in the 21st century. Science 348, 1261071. https://doi.org/ 10.1126/science.1261071.
  • 2. Augusto L., De Schrijver A., Vesterdal L., Smolander A., Prescott C., Ranger J. 2015. Influences of evergreen gymnosperm and deciduous angiosperm tree species on the functioning of temperate and boreal forests. Biol Rev, 90: 444-466. https://doi.org/10.1111/brv.12119
  • 3. Badraoui M. 2016. Connaissance et utilisation des ressources en sol au Maroc. Rabat, Maroc, Institut national de la recherche agronomique, 27 p.
  • 4. Bardgett R.D., Mommer L., De Vries F.T. 2014. Going underground: Root traits as drivers of ecosystem processes. Trends Ecol. Evol. 29, 692–699
  • 5. Bargali K., Bargali S.S. 2020. Effect of size and altitude on soil organic carbon stock in homegarden agroforestry system in Central Himalaya, India, Acta Ecologica Sinica, Volume 40, Issue 6, 2020, Pages 483-491, ISSN 1872-2032, https://doi.org/10.1016/j.chnaes.2020.10.002.
  • 6. Boča A., Jacobson A.R., Van Miegroet H. 2020. Aspen Soils Retain More Dissolved Organic Carbon Than Conifer Soils in a Sorption Experiment. Front. For. Glob. Change 3:594473. doi: 10.3389/ffgc.2020.594473
  • 7. Castellano M.J., Mueller K.E., Olk D.C., Sawyer J.E. 2015. Six, J. Integrating Plant Litter Quality, Soil Organic Matter Stabilization, and the Carbon Saturation Concept. Glob. Chang. Biol. 21, 3200–3209.
  • 8. Chakraborty S., Li B., Deb S., Paul S., Weindorf D.C., Das B.S. 2017. Predicting soil arsenic pools by visible near infrared diffuse reflectance spectroscopy. Geoderma 296:30–37. doi:10.1016/j.geoderma.2017.02.015
  • 9. Ciais P., Sabine C., Bala G., Bopp L., Brovkin V., Canadell J., Chhabra A., DeFries R., Galloway J., Heimann M., Jones C., Thornton P. 2013. “Carbon and other biogeochemical cycles,” in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, eds T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, and P. M. Midgley (Cambridge, UK; New York, NY: Cambridge University Press), 465–570.
  • 10. Conforti M., Castrignano A., Robustelli G., Scarciglia F., Stelluti M., Buttafuoco G. 2015. Laboratory-Based Vis–NIR Spectroscopy and Partial Least Square Regression with Spatially Correlated Errors for Predicting Spatial Variation of Soil Organic Matter Content. Catena, 124, 60–67.
  • 11. Couteaux M.-M., Berg B., Rovira P. 2003. Near Infrared Reflectance Spectroscopy for Determination of Organic Matter Fractions Including Microbial Biomass in Coniferous Forest Soils. Soil Biology and Biochemistry, 35, 1587–1600.
  • 12. Dai F., Zhou F.Q., Lv Z.Q., Wang X.M., Liu G.C. 2014. Spatial prediction of soil organic matter content integrating artificial neural network and ordinary kriging in Tibetan Plateau. Ecol. Indic. 45, 184–194.
  • 13. Dallahi Y., Boujraf A., Meliho M., Orlando C.A. 2023. Assessment of forest dieback on the Moroccan Central Plateau using spectral vegetation indices. Journal of Forestry Research, 34(3), 793–808.
  • 14. Duchaufour P. 1977. Pédologie. Tome I. Pédogenèse et classification. Ed. Masson, Paris, 477 p.
  • 15. El Mderssa M., Belghazi B., Benjelloun H., Zennouhi O., Nassiri L., Ibijbijen J. 2019. Estimation of Carbon Sequestration; Using Allometric Equations; in Azrou Cedar Forests (Cedrus atlantica Manetti) in the Central Middle Atlas of Morocco under Climate Change. Open Journal of Forestry, 9, 214–225. Doi: 10.4236/ojf.2019.93011.
  • 16. Fang H.S., Cheng G., Yu J, Zheng P., Zhang M., Xu Y., Li X., Yang P. 2012. Responses of CO2 efflux from an alpine meadow soil on the Qinghai Tibetan Plateau to multi-form and low-level N addition Plant Soil, 351, pp. 177–190
  • 17. Fu D., Wu X., Duan C., Smith A.R., Jones D.L. 2020. Traits of Dominant Species and Soil Properties Co-Regulate Soil Microbial Communities across Land Restoration Types in a Subtropical Plateau Region of Southwest China. Ecol. Eng. 153, 105897.
  • 18. Guo L., Zhao C., Zhang H., Chen Y., Linderman M., Zhang Q., Liu Y. 2017. Comparisons of spatial and non-spatial models for predicting soil carbon content based on visible and near-infrared spectral technology. Geoderma 285, 280–292.
  • 19. Gutiérrez-Girón A., Díaz-Pinés E., Rubio A., Gavilán R.G. 2015. Both altitude and vegetation affect temperature sensitivity of soil organic matter decomposition in Mediterranean high mountain soils. Geoderma 237–238, 1–8. doi:10.1016/j.geoderma.2014.08.005
  • 20. Houghton R.A. 2014. The contemporary carbon cycle. Treatise on Geochemistry 8, 473–513, https://doi.org/10.1016/B0-08-043751-6/08168-8
  • 21.Jia X., Li X., Zhang Z. 2006. Spatial heterogeneity of soil organic carbon and nitrogen under Ammopiptanhus mongolicus community in arid desert zone. Ying yong sheng tai xue bao=The journal of applied ecology 17(12), 2266–2270. https://doi.org/10.1360/yc-006-1280
  • 22. Jin X.L., Song K.S., Du J., Liu H.J., Wen Z.D. 2017. Comparison of different satellite bands and vegetation indices for estimation of soil organic matter based on simulated spectral configuration. Agric. For. Meteorol.
  • 23. Laganière J., Augusto L., Hatten J.A., Spielvogel S. 2022. Editorial: Vegetation Effects on Soil Organic Matter in Forested Ecosystems. Front. For. Glob. Change 4:828701. doi: 10.3389/ffgc.2021.828701
  • 24. Lefèvre C.R., Fatma A., Viridiana W. 2017. Liesl What is SOC? W. Liesl (Ed.), Soil organic carbon the hidden potential, FAO, Rome, Italy, pp. 1-9
  • 25. Liu S., An N., Yang J., Dong S., Wang C., Yin Y. 2015. Prediction of soil organic matter variability associated with different land use types in mountainous landscape in southwestern Yunnan province, China. CATENA, 133, 137–144. doi:10.1016/j.catena.2015.05.010
  • 26. Lützow M.V., Kögel-Knabner I., Ekschmitt K., Matzner E., Guggenberger G., Marschner B., Flessa H. 2006. Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions – a review. European Journal of Soil Science 57(4): 426–445.
  • 27. Mabit L., Bernard C. 2010. Spatial distribution and content of soil organic matter in an agricultural field in eastern Canada, as estimated from geostatistical tools. Earth Surface Processes and Landforms, 35(3), 278–283. Doi:10.1002/esp.1907
  • 28. Martí-Roura M., Hagedorn F., Rovira P., Romanyà J. 2019. Effect of land use and carbonates on organic matter stabilization and microbial communities in Mediterranean soils. Geoderma 351, 103–115. doi:10.1016/j.geoderma.2019.05.021
  • 29. Massaccesi L., De Feudis M., Leccese A., Agnelli A. 2020. Altitude and Vegetation Affect Soil Organic Carbon, Basal Respiration and Microbial Biomass in Apennine Forest Soils. Forests; 11(6):710. https://doi.org/10.3390/f11060710
  • 30. Mayer M., Prescott C.E., Abaker W.E.A., Augusto L., Cécillon L., Ferreira G.W.D., James, J., Jandl R., Katzensteiner K., Laclau J.P., Laganière J. 2020. Tamm Review: Influence of forest management activities on soil organic carbon stocks: A knowledge synthesis. For. Ecol. Manag. 466, 118127. doi:10.1016/j.foreco.2020.118127
  • 31. Mebius L.J. 1960. A Rapid Method for the Determination of Organic Carbon in Soil. Analytica Chimica Acta, 22, 120–124.
  • 32. Merabtene M.D., Faraoun F., Mlih R., Djellouli R., Latreche A., Bol R. 2021. Forest Soil Organic Carbon Stocks of Tessala Mount in North-West Algeria- Preliminary Estimates. Front. Environ. Sci. 8:520284. doi: 10.3389/fenvs.2020.520284
  • 33. Miltz J., Don A. 2012. Optimising Sample Preparation and near Infrared Spectra Measurements of Soil Samples to Calibrate Organic Carbon and Total Nitrogen Content. Journal of Near Infrared Spectroscopy. 20(6): 695–706.
  • 34. Moghiseh E., Heidari A., Ghannadi M. 2013. Impacts of deforestation and reforestation on soil organic carbon storage and CO2 emission. Soil Environ 32 (1), 1–13.
  • 35. Mueller K.E., Hobbie S.E., Chorover J., Reich P.B., Eisenhauer N., Castellano M.J., Chadwick O.A., Dobies T., Hale C.M., Jagodziński A.M., Kałucka, I. 2015 Effects of litter traits, soil biota, and soil chemistry on soil carbon stocks at a common garden with 14 tree species. Biogeochemistry 123, 313–327. doi: 10.1007/s10533-015-0083-6
  • 36. Nawar S., Buddenbaum H., Hill J., Kozak J., Mouazen A.M. 2016. Estimating the soil clay content and organic matter by means of different calibration methods of vis-NIR diffuse reflectance spectroscopy. Soil Tillage Res. 155:510–522. doi:10.1016/j.still.2015.07.021
  • 37. Nelson D.W., Sommers L.E. 1996. Total carbon, organic carbon, and organic matter. In Sparks, D.L., et al., Eds., Methods of Soil Analysis. Part 3, SSSA Book Series, Madison, 961–1010.
  • 38. Nocita M., Stevens A., Noon C., van Wesemael B. 2013. Prediction of soil organic carbon for different levels of soil moisture using Vis-NIR spectroscopy. Geoderma 199, 37–42.
  • 39. Roose E. 2002. Influence de la gestion de la biomasse sur l’érosion et la séquestration du carbone. Résumé des conclusions du colloque « Érosion du carbone », Montpellier, 23-28 sept. 2002. Bulletin du réseau érosion, 22 (4):4–14.
  • 40. Schelfhout S., Mertens J., Verheyen K., Vesterdal L., Baeten L., Muys B., De Schrijver A. 2017. Tree Species Identity Shapes Earthworm Communities. Forests 8, 85. doi: 10.3390/f80 30085
  • 41. Shedayi A.A., Xu M., Naseer I., Khan B. 2016. Altitudinal gradients of soil and vegetation carbon and nitrogen in a high altitude nature reserve of Karakoram ranges. Springer Plus 5(1), 320. doi:10.1186/s40064-016-1935-9
  • 42. Sheikh M.A., Kumar M., Bussmann R.W. 2009. Altitudinal variation in soil organic carbon stock in coniferous subtropical and broadleaf temperate forests in Garhwal Himalaya. Carbon Balance Manage 4, 6 (2009). https://doi.org/10.1186/1750-0680-4-6
  • 43. Tonon G., Sohi S., Francioso O., Ferrari E., Montecchio D., Gioacchini P., Ciavatta C., Panzacchi P., Powlson D. 2010. Effect of soil pH on the chemical composition of organic matter in physically separated soil fractions in two broadleaf woodland sites at Rothamsted, UK. European Journal of Soil Science, 61: 970–979. https://doi.org/10.1111/j.1365-2389.2010.01310.x
  • 44. Tripathi B.M., Stegen J.C., Kim M., Dong K., Adams J.M., Lee Y.K. 2018. Soil pH mediates the balance between stochastic and deterministic assembly of bacteria. ISME J, 12, 1072–1083
  • 45. Van Bemmelen J.M. 1890. Über die Bestimmung des Wassers, des Humus, des Schwefels, der in den colloïdalen Silikaten gebundenen Kieselsäure, des Mangans u. s. w. im Ackerboden. Die Landwirthschaftlichen Versuchs-Stationen, 37, 279–290
  • 46. Walkley A., Black I.A. 1934. An examination of Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science, 37, 29-38. Doi : 10.1097/00010694-193401000-00003
  • 47. Wan Q., Zhu G., Guo H., Zhang Y., Pan H., Yong L., Ma, H. 2019. Influence of Vegetation Coverage and Climate Environment on Soil Organic Carbon in the Qilian Mountains. Sci Rep 9, 17623. https://doi.org/10.1038/s41598-019-53837-4
  • 48. Wu X., Fu D., Duan C., Huang G., Shang H. 2022. Distributions and Influencing Factors of Soil Organic Carbon Fractions under Different Vegetation Restoration Conditions in a Subtropical Mountainous Area, SW China. Forests, 13, 629. https:// doi.org/10.3390/f13040629
  • 49. Zhou W., Han G., Liu M., Zeng J., Liang B., Liu J., Qu R. 2020. Determining the Distribution and Interaction of Soil Organic Carbon, Nitrogen, pH and Texture in Soil Profiles: A Case Study in the Lancangjiang River Basin, Southwest China. Forests. 2020; 11(5):532. https://doi.org/10.3390/f11050532
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-da2b8d33-233b-410a-82c0-7583a48693df
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.