PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Adaptive strategy to drought conditions: diurnal variation in water use of a Central Asian desert shrub

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Water availability is one of the most important factors limiting photosynthetic assimilation of carbon dioxide and growth of individual plants in terrestrial ecosystems. It is especially important for desert shrubs because the diurnal water availability is particularly sensitive to climate change in arid ecosystems. Water use efficiency (WUE) is an indicator of water availability and is frequently used to assess plant performance in various ecosystems, particularly in arid ecosystems. The WUE of plants has been widely assessed using ecological methods and field measurements; however, these approaches are impractical to obtain numerous near-simultaneous estimates of plant water status at the landscape-scale. Consequently, landscape-scale assessments of plant water status are practically pursued through modeling. In this study, measurement and modeling of the diurnal variations of WUE were conducted for a native dominant desert shrub, Tamarix ramosissima, in its original habitat on the periphery of the Gurbantunggut Desert, China. The diurnal net photosynthesis (An), stomatal conductance (gs), and transpiration (Tr) were measured for each individual using a portable photosynthesis system. A coupled model of stomatal conductance, photosynthesis, and transpiration was applied to simulate the diurnal dynamics of An, gs, Tr, and WUE. The model explained 83, 47, 83, and 55% of the variance in the measured An, gs, Tr, and WUE values, respectively, for this desert ecosystem in which T. ramosissima is sparsely distributed. The results demonstrated that the coupled photosynthesis-stomatal conductance-transpiration model strategy is a promising approach to estimate water availability in desert ecosystems in Central Asia.
Rocznik
Strony
63--76
Opis fizyczny
Bibliogr. 67 poz., rys., tab., wykr., wz.
Twórcy
autor
  • Xinjiang Institute of Ecology and Geography, Xinjiang Research Center for Mineral Resources, CAS, Urumqi 830011, China
autor
  • Xinjiang Institute of Ecology and Geography, Xinjiang Research Center for Mineral Resources, CAS, Urumqi 830011, China
autor
  • Xinjiang Institute of Ecology and Geography, Xinjiang Research Center for Mineral Resources, CAS, Urumqi 830011, China
autor
  • Xinjiang Institute of Ecology and Geography, Xinjiang Research Center for Mineral Resources, CAS, Urumqi 830011, China
  • Faculty of Agriculture, Shizuoka University, Shizuoka 422-8529, Japan
Bibliografia
  • 1. Anderson J.E. 1982 - Factors controlling transpiration and photosynthesis in Tamarax chinensis lour - Ecology, 63: 48-56.
  • 2. Arndt S.K., Kahmen A., Arampatsis C., Popp M., Adams M. 2004 - Nitrogen fixation and metabolism by groundwater-dependent perennial plants in a hyperarid desert - Oecologia, 141:385-394.
  • 3. Baldocchi D. 1994 - A comparative-study of mass and energy-exchange rates over a closed C3 (wheat) and an open C4 (corn) crop II CO2 exchange and water-use efficiency - Agr. Forest. Meteorol. 67: 291-321.
  • 4. Ball J.T., Woodrow I.E., Berry J.A. 1987 - A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions - Progress in Photosynthesis Research, 4: 221-224.
  • 5. Bennington C.C., McGraw J.B. 1995 - Nature-selection and ecotypic differentiation in Impatiens pallida - Ecol. Monogr. 65: 303-323.
  • 6. Bernacchi C.J., Portis A.R., Nakano H., von Caemmerer S., Long S.P. 2002 - Temperature response of mesophyll conductance. Implication for the determination of Rubisco enzyme kinetics and for limitations to photosynthesis in vivo - Plant Physiol. 130: 1992-1998.
  • 7. Blicker P.S., Olson B.E., Wraith J.M. 2003 - Water use and water-use efficiency of the invasive Centaurea maculosa and three native grasses - Plant Soil, 254:371-381.
  • 8. Boyer J.S. 1982 - Plant productivity and environment - Science, 218: 443-448.
  • 9. Brian D.K., Stith T.G., Isable W.T., Slava K. 1998 - Foliar carbon isotope discrimination in Larix species and sympatric evergreen conifers: a global comparison - Oecologia, 114: 153-159.
  • 10. Busch D.E., Smith S.D. 1995 - Mechanisms associated with decline of woody species in riparian ecosystems of the southwestern US - Ecol. Monogr. 65: 347-370.
  • 11. Buyantuyev A., Wu J. 2009 - Urbanization alters spatiotemporal patterns of ecosystem primary production: A case study of the Phoenix metropolitan region, USA - J. Arid Environ. 73: 512-520.
  • 12. Callister A.N., Arndt S.K., Adams M.A. 2006 - Comparison of four methods for measuring osmotic potential of tree leaves - Physiol. Plantarum. 127: 383-392.
  • 13. Champagne C.M., Staenz K., Bannari A., McNairn H., Deguise J.C. 2003 - Validation of a hyper-spectral curve-fitting model for the estimation of plant water content of agricultural canopies - Remote Sens. Environ. 87: 148-160.
  • 14. Cohen D. 1970 - Expected efficiency of water utilization in plants under different competition and selection regimes - Isr. J. Bot. 19: 50-61.
  • 15. Collatz G.J., Ball J.T., Grivet C., Berry J.A. 1991 - Physiological and environmental - regulation of stomatal conductance, photosynthesis and transpiration - a model that includes a laminar boundary-layer - Agr. Forest. Meteorol. 54: 107-136.
  • 16. Danson P.M., Steven M.D., Malthus T.J., Clark J.A. 1992 - High-spectral resolution data for determining leaf water-content - Int. J. Remote. Sens. 13:461-470.
  • 17. Deng X., Li X.M., Zhang X.M. 2003 - Studies on gas exchange of Tamarix ramosissima Lbd. - Acta Ecological Sinica, 23: 180-187 (in Chinese with English abstract).
  • 18. Dudley S.A. 1996 - Differing selection on plant physiological traits in response to environmental water availability: A test of adaptive hypotheses - Evolution, 50: 92-102.
  • 19. Durand J.L., Bariac T., Ghesquiere M., Biron P., Richard P., Humphreys M., Zwierzykovski Z. 2007 - Ranking of the depth of water extraction by individual grass plants, using natural O-18 isotope abundance - Environ. Exp. Bot. 60: 137-144.
  • 20. Farquhar G.D., Caemmerer S.V., Berry J.A. 1980 - A biochemical-model of photosynthetic CO2 assimilation in leaves of C-3 species - Plant a, 149: 78-90.
  • 21. Field C., Merino J., Mooney H.A. 1983 - Compromises between water-use efficiency and nitrogen-use efficiency in five species of California evergreens - Oecologia, 60: 384-389.
  • 22. Folland C.K., Rayner N. A., Brown S. J., Smith T.M., Shen S.S.P., Parker D.E., Macadam I., Jones P.D., Jones R.N., Nicholls N., Sexton D.M.H. 2001 - Global temperature change and its uncertainties since 1861 - Geophys. Res. Lett. 28: 2621-2624.
  • 23. Gao Q., Yu M., Zhang X.S., Xu H.M., Huang Y.M. 2005 - Modelling seasonal and diurnal dynamics of stomatal conductance of plants in a semiarid environment - Func. Plant Biol. 32: 583-598.
  • 24. Givnish T.J. 1986 - Biomechanical constraints on self-thinning in plant-populations - J. Theor. Biol. 119: 139-146.
  • 25. Glenn E., Tanner R., Mendez S., Kehret T., Moore D., Garcia J., Valdes C. 1998 - Growth rates, salt tolerance and water use characteristics of native and invasive riparian plants from the delta of the Colorado River, Mexico - J. Arid Environ. 40:281-294.
  • 26. Golluscio R.A., Oesterheld M. 2007 - Water use efficiency of twenty-five co-existing Patagonian species growing under different soil water availability - Oecologia, 154: 207-217.
  • 27. Hao X.M., Chen Y.N., Li W.H. 2009 - Indicating appropriate groundwater tables for desert river-bank forest at the Tarim River, Xinjiang, China - Environ. Monit. Assess, 152: 167-177.
  • 28. Heschel M.S., Donohue K., Hausmann N., Schmitt J. 2002 - Population differentiation and natural selection for water-use efficiency in Impatiens capensis (Balsaminaceae) - Int. J. Plant Sci. 163: 907-912.
  • 29. Hsiao T.C. 1970 - Rapid changes in levels of poly-ribosomes in Zea mays in response of water stress - Plant Physiol. 46: 281-285.
  • 30. Iritz Z., Lindroth A., Heikinheimo M., Grelle A., Kellner E. 1999 - Test of a modified Shuttle-worth-Wallace estimate of boreal forest evaporation - Agr. Forest. Meteorol. 98-9: 605-619.
  • 31. Katerji N., Perrier A. 1983 - A model of actual evapo-transpiration(ETR) for a field of luceren - the role of a crop coefficient - Agrono-mie. 3:513-521.
  • 32. Kenzo T., Ichie T., Watanabe Y., Yoneda R., Ninomiya I., Koike T. 2006 - Changes in photosynthesis and leaf characteristics with tree height in five dipterocarp species in a tropical rain forest - Tree. Physiol. 26: 865-873.
  • 33. Lai R. 2004 - Carbon sequestration in soils of central Asia - Land. Degrad. Dev. 15: 563-572.
  • 34. Leuning R. 1990 - Modeling stomatal behavior and photosynthesis of Eucalyptus grandis - Aust. J. Plant Physiol, 17: 159-175.
  • 35. Li L., Lou G., Chen X., Li Y., Xu H., Bai J. 2011 - Modelling evapotranspiration in a Central Asian desert ecosystem - Ecol. Model. 20-22: 3680-3691.
  • 36. Li L., Yu Q. 2007 - Quantifying the effects of ad-vection on canopy energy budgets and water use efficiency in an irrigated wheat field in the North China Plain - Agr. Water Manage. 89: 116-122.
  • 37. Li L., Yu Q., Su Z., van der Tol C. 2009 - A simple method using climatic variables to estimate canopy temperature, sensible and latent heat fluxes in a winter wheat field on the North China Plain - Hydrol. Process. 23: 665-674.
  • 38. Li L.H., Yu Q., Zheng Y.F., Wang J., Fang Q.X. 2006 - Simulating the response of photosynthate partitioning during vegetative growth in winter wheat to environmental factors - Field. Crop. Res. 96: 133-141.
  • 39. Long S.P. 1991 - Modification of the response of photosynthetic productivity to rising temperature by atmospheric CO2 concentrations: has its importance been underestimated? - Plant, Cell & Environment, 14: 729-739.
  • 40. Ma Q.L., Wang J.H., Li X.R., Zhu S.J., Liu H.J., Zhan K.J. 2009 - Long-term changes of Tamarix vegetation in the oasis-desert ecotone and its driving factors: implication for dryland management - Environ. Earth Sciences, 59: 765-774. doc: 710.1007/s12665-12009-10072-y.
  • 41. Medlyn B.E., Loustau D., Delzon S. 2002 - Temperature response of parameters of a biochemically based model of photosynthesis. I. Seasonal changes in mature maritime pine (Pinus pinaster Ait.) - Plant Cell Environ. 25: 1155-1165.
  • 42. Mo X., Chen J.M., Ju W., Black T.A. 2008 - Optimization of ecosystem model parameters through assimilating eddy covariance flux data with an ensemble Kalman filter - Ecol. Model. 217: 157-173.
  • 43. Monteith J.L. 1965 - Evaporation and environment - Symposia of the Society for Experimental Biology, 19: 205-234.
  • 44. Nikolov N.T., Massman W.J., Schoettle A.W. 1995 - Coupling biochemical and biophysical processes at the leaf level: an equilibrium photosynthesis model for leaves of C3 plants - Ecol. Model. 80: 205-235.
  • 45. Penman H.L. 1948 - Natural evaporation from open water, bare soil and grass - Proceedings of the Royal Society of London Series A - Mathematical and Physical Sciences, 193: 120.
  • 46. Pereira C.H.B., Taylor R.J. 1972 - On the assessment of surface heat flux and evaporation using large scale parameters - Mon. Weather. Rev. 100: 81-92.
  • 47. Pyankov V.I., Black C.C., Artyusheva E.G., Voznesenskaya E.V., Ku M.S.B., Edwards G.E. 1999 - Features of photosynthesis in Haloxylon species of Chenopodiaceae that are dominant plants in Central Asian deserts - Plant Cell Physiol. 40: 125-134.
  • 48. Quick W.P., Chaves M.M., Wendler R., David M., Rodrigues M.L., Passaharinho J.A., Pereira J.S., Adcock M.D., Leegood R.C., Stitt M. 1992 - The effect of water-stress on photosynthetic carbon metabolism in 4 species grown under field conditions - Plant Cell Environ. 15: 25-35.
  • 49. Schemske D.W. 1984 - Population-structure and local selection in Impatiens pallida (Balsaminaceae), a selfing annual - Evolution, 38: 817-832.
  • 50. Sellers P.J., Randall D.A., Collatz G.J., Berry J.A., Field C.B., Dazlich D.A., Zhang C., Collelo G.D., Bounoua L. 1996 - A revised land surface parameterization (SiB2) for atmospheric GCMs .1. Model formulation - J. Climate, 9: 676-705.
  • 51. Southgate R.I., Masters P., Seely M.K. 1996 - Precipitation and biomass changes in the Namib Desert dune ecosystem - J. Arid Environ. 33: 267-280.
  • 52. Stimson H.C., Breshears D.D., Ustin S.L., Kefauver S.C. 2005 - Spectral sensing of foliar water conditions in two co-occurring conifer species: Pinus edulis and Juniperus monosperma - Remote Sens. Environ. 96: 108-118.
  • 53. Tanaka K., Kosugi Y., Nakamura A. 2002 - Impact of leaf physiological characteristics on seasonal variation in CO2, latent and sensible heat exchanges over a tree plantation - Agr. Forest. Meteorol. 114: 103-122.
  • 54. Tinoco-Ojanguren C. 2008 - Diurnal and seasonal patterns of gas exchange and carbon gain contribution of leaves and stems of Justicia californica in the Sonoran Desert - J. Arid Environ. 72: 127-140.
  • 55. Toft N.L., Anderson J.E., Nowak R.S. 1989 - Water-use efficiency and carbon isotope composition of plants in a cold desert environment - Oecologia, 80: 11-18.
  • 56. Turner N.C. 1981 - Techniques and experimental approaches for the measurement of plant water status - Plant Soil, 58: 339-366.
  • 57. Wang S., Chen X., Wang Q., Li P., Cao X. 2012 -Identification of the best spectral indices to remotely trace the diurnal course of water use efficiency of Tamarix ramosissima in the Gurbantunggut Desert, China - Environmental Earth Sciences, 65: 11-20.
  • 58. Wolf A., Akshalov K., Saliendra N., Johnson D.A., Laca E.A. 2006 - Inverse estimation of Vc(max), leaf area index, and the Ball-Berry parameter from carbon and energy fluxes - Journal of Geophysical Research - Atmospheres, 111.
  • 59. Xu G.Q., Li Y. 2008 - Rooting depth and leaf hydraulic conductance in the xeric tree Haloxyolon ammodendron growing at sites of contrasting soil texture - Funct. Plant Biol. 35: 1234-1242.
  • 60. Xu H., Li Y. 2006 - Water-use strategy of three central Asian desert shrubs and their responses to rain pulse events - Plant Soil, 285: 5-17.
  • 61. Xu H., Li Y., Xu G.Q., Zou T. 2007 - Ecophysiological response and morphological adjustment of two Central Asian desert shrubs towards variation in summer precipitation - Plant Cell Environ. 30: 399-409.
  • 62. Yang W.k., Zhang D.Y., Zhang L.Y. 2004 - Distribution and cluster analysis on the similarity of the Tamarix communities in Xinjiang - Arid Land Geography, 27: 186-192 (in Chinese with English abstract).
  • 63. Yin X., Struik P.C. 2009 - C(3) and C(4) photosynthesis models: An overview from the perspective of crop modelling - Njas-Wageningen Journal of Life Sciences, 57: 27-38.
  • 64. Yuan S.F., Tang H.P., Yan Y.C. 2009 - Photosynthetic characteristics of spring ephemerals in the desert ecosystem of Dzungaria Basin, northwest China - Environ. Earth Sci. 59: 501-510.
  • 65. Zangerl A.R., Bazzaz F.A. 1984 - Effects of short-term selection along environmental groadients on variation in populations of Amaranthus retroflexus and Abutilon theophrasti - Ecology, 65:207-217.
  • 66. Zeng F.J., Andrea F., Li X.Y. 2002 - A preliminary study on the effect of irrigation on water physiology of Tamarix ramosisssima in Cele oasis - Chin. J. Applied Ecol. 13: 849-853 (in Chinese with English abstract).
  • 67. Zou T., Li Y., Xu H., Xu G.-Q. 2010 - Responses to precipitation treatment for Haloxylon ammodendron growing on contrasting textured soils - Ecol. Res. 25: 185-194.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-da2aa43f-2bdc-4272-902e-a0396b288ca7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.