PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Al₂O₃/TiO₂ double antireflection coating deposited by ALD method

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Al₂O₃/TiO₂ thin films were deposited onto monocrystalline silicon surfaces using an atomic layer deposition. Their surface morphology and optical properties were examined for their possible use in solar cells. The surface condition and chemical composition were characterized using a scanning electron microscope and the thickness was measured using a spectroscopic reflectometer. The refractive index and the reflection characteristics were determined. First, the optical properties of the Al₂O₃ thin filmand its influence on recombination in the semiconductor were examined. In this way, it can fulfil a double role in a solar cell. Since reflection reduction was only achieved in a narrow range, it was decided to use the Al₂O₃/TiO₂ system. Thanks to this solution, the light reflection was reduced in a wide range (even below 0.2%).
Rocznik
Strony
art. no. e141952
Opis fizyczny
Bibliogr. 17 poz., rys., wykr., tab.
Twórcy
  • Scientific and Didactic Laboratory of Nanotechnology and Material Technologies, Faculty of Mechanical Engineering, Silesian University of Technology, 7 Towarowa St., 44-100 Gliwice, Poland
  • Department of Engineering Materials and Biomaterials, Silesian University of Technology, 18a Konarskiego St., 44-100 Gliwice, Poland
  • Department of Mining, Safety Engineering and Industrial Automation, Silesian University of Technology, 2 Akademicka St., 44-100 Gliwice, Poland
  • Institute of Metallurgy and Materials Science of Polish Academy of Sciences, 25 Reymonta St., 30-059 Krakow, Poland
Bibliografia
  • [1] Leon, J. J. D., Hiszpanski, A. M., Bond, T. C. & Kuntz, J. D. Design rules for tailoring antireflection properties of hierarchical optical structures. Adv. Opt. Mater. 5, 1700080 1-8 (2017). https://doi.org/10.1002/adom.201700080
  • [2] Mousa, H. M., Shabat, M. M. & Karmoot, M. R. Double layer antireflection coating design for conductive solar cells. Rom. Rep. Phys. 72, 416 (2020). http://rrp.infim.ro/2020/AN72416.pdf
  • [3] Drygała, A. et al. Influence of laser texturization surface and atomic layer deposition on optical properties of polycrystalline silicon. Int. J. Hydrog. Energy 41, 7563-7567 (2016). https://doi.org/10.1016/j.ijhydene.2015.12.180
  • [4] Dobrzański, L. A., Szindler, M., Drygała, A. & Szindler, M. M. Silicon solar cells with Al2O3 antireflection coating. Open Phys. 12, 666-670 (2014). https://doi.org/10.2478/s11534-014-0500-9
  • [5] Sarkar, S. & Pradhan, S. K. Silica-based antireflection coating by glancing angle deposition. Surf. Eng. 35, 982-985 (2019). https://doi.org/10.1080/02670844.2019.1596578
  • [6] Szindler, M., Szindler, M. M., Boryło, P. & Jung, T. Structure and optical properties of TiO2 thin films deposited by ALD method. Open Phys. 15, 1067-1071 (2017). https://doi.org/10.1515/phys-2017-0137
  • [7] Dong, C. et al. Low emissivity double sides antireflection coatings for silicon wafer at infrared region. J. Alloys Compd. 742, 729-735 (2018). https://doi.org/10.1016/j.jallcom.2018.01.384
  • [8] Boryło, P. et al. Structure and properties of Al2O3 thin films deposited by ALD proces. Vacuum 131, 319-326 (2016). https://doi.org/10.1016/j.vacuum.2016.07.013
  • [9] Hou, G. J., Garcia, I. & Rey-Stolle, I. High-low refractive index stacks for broadband antireflection coatings for multijunction solar cells. Sol. Energy 217, 29-39 (2021). https://doi.org/10.1016/j.solener.2021.01.060
  • [10] Sarkın, A. S., Ekren, N. & Saglam, S. A review of anti-reflection and self-cleaning coatings on photovoltaic panels. Sol. Energy 199, 63-73 (2020). https://doi.org/10.1016/j.solener.2020.01.084
  • [11] Drabczyk, K., Kulesza-Matlak, G. & Drygała, A. Electro-luminescence imaging for determining the influence of metallization parameters for solar cell metal contacts. Sol. Energy 126, 14-21 (2016). https://doi.org/10.1016/j.solener.2015.12.029
  • [12] Park, H. H. Inorganic materials by atomic layer deposition for perovskite solar cells. Nanomaterials 11, 1-22 (2021). https://doi.org/10.3390/nano11010088
  • [13] Hossain, M. A. et al. Atomic layer deposition enabling higher efficiency solar cells: A review. Nano Materials Sci. 2, 204-209 (2020). https://doi.org/10.1016/j.nanoms.2019.10.001
  • [14] Shanmugam, N. et al. Anti-reflective coating materials: a holistic review from pv perspective. Energies 13, 2631 (2020). https://doi.org/10.3390/en13102631
  • [15] Zhang, W. et al. Broadband graded refractive index TiO2/Al2O3/MgF2 multilayer antireflection coating for high efficiency multi-junction solar cell. Sol. Energy 217, 271-279 (2021). https://doi.org/10.1016/j.solener.2021.01.012
  • [16] Singh, R. et al.Growth of TiO2 thin films on chemically textured Si for solar cell applications as a hole-blocking and antireflection layer. Appl. Surf. Sci. 418, 225-231 (2017). https://doi.org/10.1016/j.apsusc.2017.01.307
  • [17] Suh D. Status of Al2O3/TiO2-based antireflection and surface passivation for silicon solar cells. Phys. Status Solidi Rapid Res. Lett. 15, 2100236 (2021). https://doi.org/10.1002/pssr.202100236
Uwagi
This publication was supported under the scholarship fund of the Silesian University of Technology in the field of scientific research and development works, 2022.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-da25e574-2c86-41c0-8b48-02e57acd062a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.