PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of Low-Frequency Ultrasound on the Disintegration of Coliform and Fecal Coliform Bacteria

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Wastewater contains an abundance of pathogenic microorganisms, which, if they infiltrate into the environment, can cause many bacterial diseases. The lack of widespread use of the wastewater disinfection process raises more and more concerns about the sanitary quality of the wastewater leaving treatment plants. This article aimed to test the effectiveness of the ultrasonic disintegration process against coliform bacteria and fecal coliforms in the treated wastewater. The paper presents the research on the use of ultrasound with a frequency of 20 and 40 kHz, with a variable and constant operating mode of an ultrasonic cleaner. The obtained test results confirm the effectiveness of the applied method. In most of the analyzed cases, 25-minute sonication reduced the number of tested microorganisms by over 90% compared to the control sample. Ultrasonic disintegration can therefore be successfully used in municipal wastewater treatment plants. The use of ultrasound for disinfection can improve the sanitary safety of the wastewater discharged into water or soil.
Rocznik
Strony
192--197
Opis fizyczny
Bibliogr. 26 poz., rys., tab.
Twórcy
  • Department of Chemistry, Biology and Biotechnology, Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology, 15-351 Bialystok, Poland
  • Department of Chemistry, Biology and Biotechnology, Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology, 15-351 Bialystok, Poland
Bibliografia
  • 1. Bitton G. 2011. Wastewater Microbiology. 4th Edition, Wiley-Blackwell, New York.
  • 2. Butarewicz A. 2012. Pathogenic organisms in sewage sludge their detection and neutralization. Publishing House of the Białystok University of Technology (In Polish), Bialystok.
  • 3. Butarewicz A. 2016. Application of ultrasounds for the disintegration of microorganisms in sewage and sewage sludge. Publishing House of the Białystok University of Technology (In Polish), Białystok.
  • 4. Butarewicz A., Wołejko E., Jabłońska-Trypuć A., Wydro U. 2017. The use of low frequency ultrasound to disintegrate filamentous bacteria. Engineering and Environmental Protection, 20(3), 305–316.
  • 5. Bray R., Jankowska K., Kowal P., Kulbat E., Łuczkiewicz A., Olańczuk-Neyman K., Quant B., Sokołowska A. 2015. Sewage disinfection (In Polish). „Seidel-Przywecki“ Sp. z o.o. Publishing House, Warsaw, Poland.
  • 6. Braguglia C.M., Gagliano M.C., Gallipoli A., Mannini G. 2015. The impact of sludge pretreatment for sludge anaerobic digestion: Effect of floc structure and microbial population, Bioresource Technology, 110, 43–49.
  • 7. Central Statistical Office 2021. Local Data Bank (In Polish). https://bdl.stat.gov.pl [Date of access: 01.07.2021]
  • 8. Dauknys R., Mazeikiene A., Paliulis D. 2020. Effect of ultrasound and high voltage disintegration on sludge digestion proces. Journal of Environmental Management. 27015, 110833.
  • 9. De Boeck H., Miwanda B., Lunguya-Metila O., Muyembe-Tamfum J.J., Stobberingh E., Glupczynski Y., Jacobs J. 2012. ESBL-positive Enterobacteria isolates in drinking water. Emerging Infectious Diseases, 18, 1019–1020.
  • 10. Drudge C.N., Elliott A.V., Plach J.M., Ejim L.J., Wright G.D., Droppo I.G., Waren L.A. 2012. Diversity of integronand culture-associated antibiotic resistance genes in freshwater floc. Applied and Environmental Microbiology, 8, 4367–4372.
  • 11. Figueira V., Serra E.A., Vaz-Moreira I., Brandao T.R., Manaia C.M. 2012. Comparison of ubiquitous antibiotic-resistant Enterobacteriaceae populations isolated from wastewaters, surface waters and drinking waters. Journal of Water and Health, 10, 1–10.
  • 12. Foladori P., Laura B., Gianni A., Giulano Z. 2007. Effects of sonication on bacteria viability in wastewater treatment plants evaluated by flow cytometryFecal indicators, wastewater and activated sludge. Water research, 41(1), 235–243.
  • 13. Frank D.N., St Amand A.L., Feldman R.A., Boedeker E.C., Harpaz N., Pace N.R. 2007. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proceedings of the National Academy of Sciences of the United States of America, 104, 13780–13785.
  • 14. Hawrylik E. 2018. Influence of ultrasounds on the disintegration of filamentous bacteria present in activated sludge (In Polish). Gas, Water and Sanitary Technology, 1(92), 29–31.
  • 15. Leclerc H., Mossel D.A.A., Edberg S.C., Struijk C.B. 2001. Advances in the bacteriology of the coliform group: their suitability as markers of microbial water safety. Annual Review of Microbiology, 55, 201–234.
  • 16. Michałkiewicz M., Jeż-Walkowiak J., Dymaczewski Z., Sozański M. 2011. Wastewater disinfection. Journal of Ecological Engineering (In Polish), 24, 38–51.
  • 17. Naidoo S., Olaniran A. 2014. Treated Wastewater Effluent as a Source of Microbial Pollution of Surface Water Resources. International Journal of Environmental Research and Public Health, 11(1), 249–270.
  • 18. U.S. Environmental Protection Agency. 2003. Environmental Regulations and Technology: Control of Pathogens and Vector Attraction in Sewage Sludge, Epa/625/R-92/013, Revised edition. U.S. EPA, Washington, D.C.
  • 19. Pathki S., Kumar M.S., Vaidya A.N. 2014. Solubilization and Elimination of Coliforms from Sewage Sludge by Sonication. Journal of environmental science & engineering. 56(1), 89–92.
  • 20. Simonetti M., Rossi G., Cabbai V., Goi D. 2014. Tests on the effect of ultrasonic treatment on two different activated sludge waste, Environment Protection Engineering, 40(1), 23–34.
  • 21. Regulation of the Minister of Maritime Economy and Inland Navigation of 12 July 2019 on substances particularly harmful to the aquatic environment and the conditions to be met when discharging sewage into waters or soil, as well as when discharging rainwater or meltwater into waters or into devices water (In Polish), (Journal of Laws 2019, item 1311).
  • 22. Rusin A., Machnicka A. 2011. Ultrasonic cavitation in the hygienization of activated sludge). Scientific Works of GIG. Mining and Environment, Central Mining Institute (In Polish), 3, 73–80
  • 23. Wolski P. 2020. The effect of ultrasonic disintegration on sewage sludge conditionin. Desalination and Water Treatment, 199, 99–106.
  • 24. WHO 2011. Guidelines for drinking-water quality, World Health Organization, Geneva, Switzerland.
  • 25. Zawieja I., Wlodarczyk R., Kowalczyk M. 2019. Biogas generation from sonicated excess sludge. Water (Switzerland), 11, 10, 2127.
  • 26. Zhang T., Shao M.F., Ye L. 2012. 454 pyrosequencing reveals bacterial diversity of activated sludge from sewage treatment plants. Multidisciplinary Journal of Microbial Ecology, 6, 1137–1147.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-da1e29da-61a2-468b-b8ed-79f22baf568a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.