PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Study of Thermal Degradation of Starch-Based Binder by TG-DTG-DSC, Py-GC/MS and DRIFTS

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper focuses on the thermal behavior of the starch-based binder (Albertine F/1 by Hüttenes-Albertus) used in foundry technology of molding sand. The analysis of the course of decomposition of the starch material under controlled heating in the temperature range of 25- 1100°C was conducted. Thermal analysis methods (TG-DTG-DSC), pyrolysis gas chromatography coupled with mass spectrometry (Py- GC/MS) and diffuse reflectance spectroscopy (DRIFT) were used. The application of various methods of thermal analysis and spectroscopic methods allows to verify the binder decomposition process in relation to conditions in the form in both inert and oxidizing atmosphere. It was confirmed that the binder decomposition is a complex multistage process. The identification of CO2 formation at set temperature range indicated the progressive process of decomposition. A qualitative evaluation of pyrolysis products was carried out and the course of structural changes occurring in the presence of oxygen was determined based on thermo-analytical investigations the temperature of the beginning of binder degradation in set condition was determined. It was noticed that, significant intensification of Albertine F/1 sample decomposition with formation of more degradation products took place at temperatures above 550ºC. Aromatic hydrocarbons were identified at 1100ºC.
Rocznik
Tom
Strony
21--26
Opis fizyczny
Bibliogr. 20 poz., rys., tab., wykr.
Twórcy
  • AGH University of Science and Technology, Faculty of Foundry Engineering, Krakow, Poland
  • AGH University of Science and Technology, Faculty of Foundry Engineering, Krakow, Poland
autor
  • AGH University of Science and Technology, Faculty of Foundry Engineering, Krakow, Poland
autor
  • AGH University of Science and Technology, Faculty of Foundry Engineering, Krakow, Poland
autor
  • AGH University of Science and Technology, Faculty of Foundry Engineering, Krakow, Poland
Bibliografia
  • [1] Perez, S., Baldwin, P.M., & Gallant, D.J. (2009). Structural Features of Starch Granules I. In Starch. Chemistry and Technology. (Third Edit., pp. 149-192). Elsevier Inc. DOI:10.1016/B978-0-12-746275-2.00005-7.
  • [2] Olatunji, O. (Ed.). (2016). Natural Polymers. Industry Techniques and Applications. Springer International Publishing AG Switzerland.
  • [3] Lewandowski, J.L. (1995). Materials for casting moulds. Kraków: Akapit.
  • [4] Brown, J. (Ed.). (2000). Sands and green sand. In Foseco Ferrous Foundryman’s Handbook. Butterworth- Heinemann.
  • [5] Zhou, X., Yang, J., & Qu, G. (2007). Study on synthesis and properties of modified starch binder for foundry. Journal of Materials Processing Technology. 183(2-3), 407-411. DOI:10.1016/j.jmatprotec.2006.11.001.
  • [6] Zhou, X., Yang, J., Su, D., & Qu, G. (2009). The high-temperature resistant mechanism of α-starch composite binder for foundry. Journal of Materials Processing Technology. 209(14), 5394-5398. DOI:10.1016/j.jmatprotec. 2009.04.010.
  • [7] Kaczmarska, K., Bobrowski, A., Żymankowska, S., & Grabowska, B. (2017). Studies on the Gases Emission under High Temperature Condition from Moulding Sands Bonded by Modified Starch CMS-Na. Archives of Foundry Engineering. 17(1), 79-82. DOI:https://doi.org/10.1515/afe-2017-0014.
  • [8] Kaczmarska, K., & Grabowska, B. (2014). Biodegradation of a new polymer binder based on modified starch in a water environment. Metallurgy and Foundry Engineering. 40(1), 7-14.
  • [9] Yu, W., He, H., Cheng, N., Gan, B., & Li, X. (2009). Preparation and experiments for a novel kind of foundry core binder made from modified potato starch. Materials and Design. 30(1), 210-213. DOI:10.1016/j.matdes. 2008.03.017.
  • [10] Additives for molding and sputter compounds - Hüttenes Albertus Chemische Werke GmbH. (n.d.). Retrieved March 6, 2016, from http://www.huettenes-albertus.pl/produkty/ dodatki_do_mas_formierskich_i_rdzeniowych/index.html.
  • [11] Kaczmarska, K., Grabowska, B., Drożyński, D., Kurleto, Ż., & Szymański, Ł. (2015). An assessment of the effectiveness of physical curing methods of molding sand bonded by binders based on starch and aluminosilicates. Metallurgy and Foundry Engineering. 41(3), 133-141.
  • [12] K. Kaczmarska, B.G., S. Cukrowicz, & A. Bobrowski, S.Ż.-K. (2018). Analysis of Structural Changes in Starch - Aluminosilicate Binder and Molding Sand with its Participation after Physical Curing. Archives of Foundry Engineering. 18(3), 138-143. DOI:10.24425/123616.
  • [13] Grabowska, B., Malinowski, P., Szucki, M., & Byczyński, Ł. (2016). Thermal analysis in foundry technology. Journal of Thermal Analysis and Calorimetry. 126(1), 245-250. DOI:10.1007/s10973-016-5435-5.
  • [14] Pielichowski, K., & Njuguna, J. (2005). Thermal Degradation of Polymeric Materials. United Kingdom: Rapra Technology Limited.
  • [15] Hornung, P.S., do Prado Cordoba, L., da Silveira Lazzarotto, S.R., Schnitzler, E., Lazzarotto, M., & Ribani, R.H. (2017). Brazilian Dioscoreaceas starches. Thermal, structural and rheological properties compared to commercial starches. Journal of Thermal Analysis and Calorimetry. 127(3), 1869-1877. DOI:10.1007/s10973-016-5747-5.
  • [16] Liu, X., Wang, Y., Yu, L., Tong, Z., Chen, L., Liu, H., & Li, X. (2013). Thermal degradation and stability of starch under different processing conditions. Starch/Stärke. 65(1-2), 48-60. doi:10.1002/star.201200198.
  • [17] Budarin, V., Clark, J.H., Hardy, J.J.E., Luque, R., Milkowski, K., Tavener, S.J., & Wilson, A.J. (2006). Starbons: New starch-derived mesoporous carbonaceous materials with tunable properties. Angewandte Chemie - International Edition. 45(23), 3782-3786. DOI:10.1002/ anie.200600460.
  • [18] Kaczmarska, K., Grabowska, B., Grabowski, G., Bobrowski, A., & Kurleto-Kozioł, Ż. (2017). Thermal decomposition of binder based on etherified starch to use in foundry industry: TG-DTG-DSC and DRIFT investigations. Journal of Thermal Analysis and Calorimetry. 130(1), 285-290. DOI:10.1007/s10973-017-6451-9.
  • [19] Kizil, R., Irudayaraj, J., & Seetharaman, K. (2002). Characterization of Irradiated Starches by Using FT-Raman and FTIR Spectroscopy. Journal of Agricultural and Food Chemistry. 50(14), 3912-3918. doi:10.1021/jf011652p.
  • [20] Capek, P., Drabik, M., & Turjan, J. (2010). Characterization of starch and its mono and hybrid derivatives by thermal analysis and FT-IR spectroscopy. Journal of Thermal Analysis and Calorimetry. 99, 667-673. DOI:10.1007/ s10973-009-0194-1.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-da19ec0b-723a-4bb4-beff-5421d18af67d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.