PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Reducing Tannery Wastewater Pollutants through a Magnetic-Field and Ozone-Treatment Electrocoagulation System using Response Surface Methodology

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study assessed the effectiveness of integrating electrocoagulation, magnetic fields, and ozonation technologies to remove chemical oxygen demand (COD) and total suspended solids (TSS) from tannery wastewater. Furthermore, the effects of their key operating factors were determined. To achieve this goal, an electrocoagulation reactor coupled with a magnetic-field generator was used and the response surface methodology was applied through a Box-Behnken experimental design. Here, current intensity (I), treatment time (T), and ozone concentration (O3) are considered the influencing factors. Likewise, the removal percentages of COD and TSS serve as response indicators. The results indicate that T, I, and O3 are significant for the removal of COD and TSS at a confidence level of p-value < 0.05. For COD, the optimal operating conditions are I = 6.8 A, T = 30 min, and O3 = 10 mg/l; and for TSS, the optimal conditions are I = 5.72 A, T = 28 min, and O3 = 7.8 mg/l. These conditions yield removal efficiencies of 41.8% for COD and 97.9% for TSS. The findings suggest that integrating these technologies is a viable alternative for mitigating the pollution issues caused by the tannery industry.
Rocznik
Strony
74--83
Opis fizyczny
Bibliogr. 44 poz., rys., tab.
Twórcy
  • Instituto de Investigación Científica (IDIC), Universidad de Lima, Av. Javier Prado Este 4600, Surco, Lima, Perú
  • Centro de Innovación Productiva y Transferencia Tecnológica del Cuero, Calzado e Industrias Conexas (CITEccal Lima)-ITP, Av. Caquetá 1300, Rímac, Lima, Peru
  • Universidad de Lima, Av. Javier Prado Este 4600, Surco, Lima, Perú
Bibliografia
  • 1. Aboulhassan M.A., El Ouarghi H., Ait Benichou S., Ait Boughrous A., Khalil F. 2018. Influence of experimental parameters in the treatment of tannery wastewater by electrocoagulation, Separation Science and Technology, 53(17), 2717-2726, DOI: 10.1080/01496395.2018.1470642.
  • 2. Aguilar E., Marrufo L., Neyra W. 2019. Reduction of Total Chromium Levels from Raw Tannery Wastewater via Electrocoagulation using Response Surface Methodology. Journal of Ecological Engineering. J. Ecol. Eng. 2019; 20(11), 217–224 https://doi.org/10.12911/22998993/113191.
  • 3. Aguilar E., Marrufo L., Neyra W. 2020. Efficiency of electrocoagulation method to reduce COD, BOD and TSS in tannery industry wastewater: application of the box–behnken design. Leather and Footwear Journal. https://doi.org/10.24264/lfj.20.3.1.
  • 4. Ahangarnokolaei M.A., Ayati B., Ganjidoust H. 2021. Simultaneous and sequential combination of electrocoagulation and ozonation by Al and Fe electrodes for DirectBlue71 treatment in a new reactor: Synergistic effect and kinetics study, Chemosphere, 285,131424. https://doi.org/10.1016/j.chemosphere.2021.131424.
  • 5. Alcocer-Meneses P., Cabrera-Salazar A.B., Medina-Collana J.T., Rosales-Huamani J.A., Franco-Gonzales E.J., Reyna-Mendoza G.E. 2022.Effects of the Operational Parameters in a Coupled Process of Electrocoagulation and Advanced Oxidation in the Removal of Turbidity in Wastewater from a Curtember. Appl. Sci. 12, 8158. https://doi.org/10.3390/app12168158.
  • 6. Asaithambi P., Aziz A.R.A., Daud W.M.A.B.W. 2016. Integrated ozone—electrocoagulation process for the removal of pollutant from industrial effluent: optimization through response surface methodology. Chem. Eng. Process, 105, 92–102. https://doi.org/10.1016/j.cep.2016.03.013.
  • 7. Barzegar Gelavizh., Wu Junxue., Ghanbari Farshid.2019. Enhanced treatment of greywater using electrocoagulation/ozonation: Investigation of process parameters. Process Safety and Environmental Protection, 121. 10.1016/j.psep.2018.10.013.
  • 8. Bilińska L., Blus k., Gmurek M., Ledakowicz S. 2019. Coupling of electrocoagulation and ozone treatment for textile wastewater reuse, Chem. Eng. J. 358(2019), 992–1001. https://doi.org/10.1016/j.cej.2018.10.093.
  • 9. Bishwatma Biswas., Sudha Goel. 2022. Electrocoagulation and electrooxidation technologies for pesticide removal from water or wastewater: A review, Chemosphere, Volume 302,134709. https://doi.org/10.1016/j.chemosphere.2022.134709.
  • 10. Can O.T., Kobya M., Demirbas E., Bayramoglu M. 2006. Treatment of the textile wastewater by combined electrocoagulation. Chemosphere 62, 181e187. https://doi.org/10.1016/j.chemosphere.2005.05.022.
  • 11. Cho Y.I., Lee S.H. 2005. Reduction in the surface tension of water due to physical water treatment for fouling control in heat exchangers. International Communications in Heat and Mass Transfer, 3(1–2), 1–9. doi: 10.1016/j.icheatmasstransfer.2004.03.019.
  • 12. De la Luz-Pedro A., Efraín F., Martínez P., López-Araiza M.H., Jaime-Ferrer S., Estrada-Monje A., Bañuelos A. 2019. “Pollutant Removal from Wastewater at Different Stages of the Tanning Process by Electrocoagulation”, Journal of Chemistry, vol. 2019, Article ID 8162931, 9 pages, 2019. https://doi.org/10.1155/2019/8162931.
  • 13. Dermentzis K.I. 2016. Removal of sulfide and COD from a crude oil wastewater model by aluminum and iron electrocoagulation. J. Eng. Sci. Technol. Rev. 9, 13–16.
  • 14. Ebba Million. 2021. Studies on electrode combination for COD removal from domestic wastewater using electrocoagulation. Heliyon. 7. https://doi.org/10.1016/j.heliyon. 2021.e08614.
  • 15. Esfandyari Y., Saeb K., Tavana A., Rahnavard A., Fahimi F.G. 2019. Effective removal of cefazolin from hospital wastewater by the electrocoagulation process. Water Sci.Technol. 80, 2422–2429.
  • 16. Espinoza-Quiñones F.R., Fornari M.M.T., Modenes A.N., Palacio S.M., Trigueros D.E.G., Borba F.H., Kroumov A.D. 2009.Electrocoagulation efficiency of the tannery effluent treatment using aluminum electrodes, Water Sci Technol, 2009, 60, 2173–2185. https://doi.org/10.2166/ wst.2009.518.
  • 17. Garcés-Pineda F.A., Blasco-Ahicart M., Nieto-Castro D., López N., Galán-Mascarós J.R. 2019. Direct magnetic enhancement of electrocatalytic water oxidation in alkaline media. Nature Energy, 4, 519–425.
  • 18. Ghernaout D., Ghernaout B., Saiba A., Boucherit A., Kellil A. 2009. Removal of humic acids by continuous electromagnetic treatment followed by electrocoagulation in batch using aluminium electrodes, Desalination, 239(1–3), 295–308.https://doi.org/10.1016/j.desal.2008.04.001
  • 19. Guo Z., Jian Guo Cui J., Gang Wei. 2014. The Effect of Applied Magnetic Field on the Mine Water Coagulation Applied Mechanics and Materials (Volumes 522–524) 1021–1026. https://doi.org/10.4028/www.scientific.net/AMM.522-524.1021.
  • 20. Hernández-Ortega M., Ponziak T., Barrera-Díaz C., Rodrigo M.A., Roa-Morales G., Bilyeu B. 2010. Use of a combined electrocoagulation–ozone process as a pretreatment for industrial wastewater. Desalination 250, 144–149. https://doi.org/10.1016/j.desal.2008.11.021.
  • 21. Holt P., Barton G., Mitchell C. 2005. The future for electrocoagulation as a localized water treatment technology. Chemosphere, 59, 355–367. http://dx.doi.org/10.1016/j.chemosphere.2004.10.023.
  • 22. Ibanez J.G., Vazquez-Olavarrieta J.L., Hernandez-Rivera L., Garcia-Sanchez M.A., Garcia-Pintor E. 2012. A novel combined electrochemical-magnetic method for water treatment. Water Sci. Technol. 65, 2079. https://doi.org/10.2166/wst.2012.108.
  • 23. Irki Sara & Ghernaout Djamel, Naceur Wahib. 2017. Decolourization of Methyl Orange (MO) by Electrocoagulation (EC) using Iron Electrodes under a Magnetic Field (MF). Desalination and water treatment. 79. 368–377. 10.5004/dwt.2017.20797.
  • 24. Johan S., Fadil O., Zularisham A. 2004. Effect of magnetic fields on suspended particles in Sewage. Malaysian Journal of Science, 23, 141–148. https://doi.org/10.12962/j25983806.v5.i3.317.
  • 25. Joseph C.G., Farm Y.Y., Taufiq-Yap Y.H., Pang C.K., Nga J.L., Puma G.L. 2021. Ozonation treatment processes for the remediation of detergent wastewater: a comprehensive review. J. Environ. Chem. Eng. 106099. https://doi.org/10.1016/j.jece.2021.106099.
  • 26. Kanagaraj J., Senthivelan T., Panda R.C., Kavitha S. 2014. Eco-friendly waste management strategies for greener environment towards sustainable development in leather industry: A comprehensive review. Journal of Cleaner Production. https://doi.org/10.1016/j.jclepro.2014.11.013.
  • 27. Kobya M., Demirbas E., Can OT., Bayramoglu M. 2006. Treatment of levafix orange textile dye solution by electrocoagulation, J. Hazard. Mater. 132 (2006) 183–188. https://doi.org/10.1016/j.jhazmat.2005.07.084.
  • 28. Koyuncu S., Arıman S. 2020. Domestic wastewater treatment by real-scale electrocoagulation process. Water Sci. Technol. 1–12.
  • 29. Liu Y., Yang J., Jiang W., Chen Y., Yang Ch., Wang T., Li Y. 2018. Experimental studies on the enhanced performance of lightweight oil recovery using a combined electrocoagulation and magnetic field processes. Chemosphere 205, 601–609. https://doi.org/10.1016/j.chemosphere.2018.04.113.
  • 30. Liu Z., Demeestere K., Hulle S.V. 2021. Comparison and performance assessment of ozone-based AOPs in view of trace organic contaminants abatement in water and wastewater: a review, J. Environ. Chem. Eng. 9 (2021) 105–599. https://doi.org/10.1016/j.jece.2021.105599.
  • 31. Malakootian M., Mansoorian H.J., Moosazadeh M. 2010. Performance evaluation of electrocoagulation process using iron-rod electrodes for removing hardness from drinking water, Desalination, Volume 255, Issues 1–3, 2010, Pages 67-71.https://doi.org/10.1016/j.desal.2010.01.015.
  • 32. Malik S.N., Ghosh A.N., Vaidya A.N., Mudliar S.N. 2020. Hybrid ozonation process for industrial wastewater treatment: principles and applications: a review, J. Water Process Eng. 35 (2020), 101193. https://doi.org/10.1016/j.jwpe.2020.101193
  • 33. Mondal S., Purkait M. K., De S. 2018. Adsorption of dyes. In Advances in Dye Removal Technologies, pp. 49–98. Springer, Singapore. https://doi.org/10.1007/978-981-10-6293-3_2.
  • 34. Moussa D.T., El-Naas M.H., Nasser M., Al-Marri M.J. 2017. A comprehensive review of electrocoagulation for water treatment: potentials and challenges. J. Environ. Manag. 186, 24–41. https://doi.org/10.1016/j.jenvman.2016.10.032.
  • 35. Nasrullah M., Zularisam A.W., Krishnan S., Sakinah M., Singh L., Fen Y.W. 2019. High performance electrocoagulation process in treating palm oil mill effluent using high current intensity application. Chin. J. Chem. Eng. 27, 208–217. http://dx.doi.org/10.1016/j.cjche.2018.07.021.
  • 36. Nugroho F., Aryanti P., Nurhayati S., Muna H. 2019. A combined electrocoagulation and mixing process for contaminated river water treatment, AIP Conf Proc. AIP Publishing LLC, pp.030017. https://doi.org/10.1063/1.5098192.
  • 37. Papadopoulos K.P., Argyriou R., Economou C.N., Charalampous N., Dailianis S., Tatoulis T.I., Tekerlekopoulou A.G., Vayenas D.V. 2019. Treatment of printing ink wastewater using electrocoagulation. J. Environ. Manag. 237, 442–448. https://doi.org/10.1016/j.jenvman.2019.02.080.
  • 38. Piña M., Martín A., Gonzáles C., Prieto F., Guevara A., García J. 2011. Revisión de variables de diseño y condiciones de operación en la electrocoagulación. Revista Mexicana de Ingeniería Química, 10(2),257-271. Recuperado de http://www.scielo.org.mx/scielo.php?script=sci_rttext&pid=S1665-27382011000200010.
  • 39. Pranjal P. Das et al. 2021.”Integrated ozonation assisted electrocoagulation process for the removal of cyanide from steel industry wastewater,” Chemosphere, 263, 128370.
  • 40. Ravikumar K., Deebika B., Balu K. 2005. Decolourization of aqueous dye solutions by a novel adsorbent: application of statistical designs and surface plots for the optimization and regression analysis J. Hazard. Mater., 22 (2005), 75–83.
  • 41. Shokri A., Fard M.S. 2022. A critical review in electrocoagulation technology applied for oil removal in industrial wastewater. Chemosphere, 288, 132355. https://doi.org/10.1016/j.chemosphere.2021.132355.
  • 42. Wagh M.P., Nemade P.D. 2017. An influence of experimental parameters in the treatment of anaerobically treated distillery spent wash by using ozone assisted electrocoagulation 83(2017), 7–15.https://doi.org/10.5004/dwt.2017.21041.
  • 43. Yasri Nael., Nightingal Michael Nightingal., Keith J. Cleland., Edward P.L. Roberts. 2022. The impact of a magnetic field on electrode fouling during electrocoagulation, Chemosphere,2022,135207, https://doi.org/10.1016/j.chemosphere.2022.135207.
  • 44. Varank G., Erkan H., Yazýcý S., Demir A., Engin G. 2014. Electrocoagulation of tannery wastewater using monopolar electrodes: process optimization by response surface methodology, Int J Environ Res, 2014, 8, 165–180. http://dx.doi.org/10.22059/IJER.2014.706.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-da0fee3f-8c4d-4c16-9f80-c24c594e45f5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.