PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

A combined full-field imaging and metallography approach to assess the local properties of gas tungsten arc welded copper–stainless steel joints

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The local material properties of gas tungsten arc welded (GTAW) C21000 grade copper alloy (Cu) to AISI 304 grade stainless steel (SS) joints using (ErNiCu-7) filler material are studied using a range of material characterization techniques. Electron Back Scattered Diffraction (EBSD) studies across the weld confirmed the relationships existing between the solidification modes (dendritic, planar) and their corresponding grain morphology in a high resolution. The SEM-Backscattered Electron Mode (BSE) integrated with Energy Dispersive Spectroscopy (EDS) analysis evidenced the local heterogeneous compositions across the dissimilar weld. The global and local mechanical performance of the weld joints are assessed using a conventional uniaxial tensile tests and full-field 2D-digital image correlation (DIC) respectively. The local material behaviour of the weld joint is in-line with the compositional and microstructural gradients. The weld joint has achieved the ultimate tensile strength (UTS) of 258 ± 14 MPa, which is very close to the strength of the Cu base metal (BM) and all the joints were fractured in the Cu-HAZ. Microhardness distributions measured using a spatially positioned indents found that the weld fusion zone (129.28 ± 19.22 HV) has higher hardness in compared to the Cu-BM (80.51 ± 2.58 HV).
Rocznik
Strony
251--267
Opis fizyczny
Bibliogr. 30 poz., rys., tab., wykr.
Twórcy
  • Department of Mechanical Engineering, SSN College of Engineering, Kalavakkam 603 103, Tamil Nadu, India
  • Department of Mechanical Engineering, SSN College of Engineering, Kalavakkam 603 103, Tamil Nadu, India
  • Radiological Safety and Environmental Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, Tamil Nadu, India
Bibliografia
  • [1] N. Kumar, R.S. Mishra, Friction Stir Welding of Dissimilar Alloys and Materials, Elsevier Publication, 2015.
  • [2] B. Silwal, L. Li, A. Deceuster, B. Griffiths, Effect of post weld heat treatment on the toughness of heat-affected zone for grade 91 steel, Weld. J. 92 (2013) 80–87.
  • [3] C. Pandey, M.M. Mahapatra, P. Kumar, N. Saini, Homogenization of P91 weldments using varying normalizing and tempering treatment, Mater. Sci. Eng. A 710 (2018) 86–101.
  • [4] J. Cao, Y. Gong, K. Zhu, Z.G. Yang, X.M. Luo, F.M. Gu, Microstructure and mechanical properties of dissimilar materials joints between T92 martensitic and S304H austenitic steels, Mater. Des. 32 (5) (2011) 2763–2770.
  • [5] K. Martinsen, S.J. Hu, B.E. Carlson, Joining of dissimilar materials, CIRP Ann. Manuf. Technol. 64 (2) (2015) 679–699.
  • [6] A.J. Ramirez, D.M. Benati, Effect of tool offset on dissimilar Cu-AISI 316 stainless steel friction stir welding, in: Proc. 21st International Offshore and Polar Engineering Conference, 2011.
  • [7] C. Lusch, M. Borsch, C. Heidt, N. Magginetti, J. Sas, K.P. Weiss, Qualification of electron-beam welded joints between copper and stainless steel for cryogenic application, in: IOP Conference Series, 2015.
  • [8] T.A. Mai, A.C. Spowage, Characterisation of dissimilar joints in laser welding of steel–kovar, copper–steel and copper–aluminium, Mater. Sci. Eng. A 374 (1–2) (2004) 224–233.
  • [9] I. Magnabosco, P. Ferro, F. Bonollo, L. Arnberg, An investigation of fusion zone microstructures in electron beam welding of copper–stainless steel, Mater. Sci. Eng. A 424 (1–2) (2006) 163–173.
  • [10] J. Kar, S.K. Roy, G.G. Roy, Effect of beam oscillation on electron beam welding of copper with AISI-304 stainless steel, J. Mater. Process. Technol. 233 (2016) 174–185.
  • [11] S. Chen, J. Huang, J. Xia, H. Zhang, X. Zhao, Microstructural characteristics of a stainless steel/copper dissimilar joint made by laser welding, Metal. Mater. Trans. A 44 (8) (2013) 3690–3696.
  • [12] C. Yao, B. Xu, X. Zhang, J. Huang, J. Fu, Y. Wu, Interface microstructure and mechanical properties of laser welding copper–steel dissimilar joint, Opt. Laser. Eng. 47 (7–8) (2009) 807–814.
  • [13] G. Phanikumar, S. Manjini, P. Dutta, K. Chattopadhyay, J. Mazumder, Characterization of a continuous CO2 laserwelded Fe–Cu dissimilar couple, Metal. Mater. Trans. A 36 (8) (2005) 2137–2147.
  • [14] A. Durgutlu, B. Gülenç, F. Findik, Examination of copper/stainless steel joints formed by explosive welding, Mater. Des. 26 (6) (2005) 497–507.
  • [15] A. Durgutlu, H. Okuyucu, B. Gulenc, Investigation of effect of the stand-off distance on interface characteristics of explosively welded copper and stainless steel, Mater. Des. 29 (7) (2008) 1480–1484.
  • [16] V. Shokri, A. Sadeghi, M.H. Sadeghi, Effect of friction stir welding parameters on microstructure and mechanicalproperties of DSS–Cu joints, Mater. Sci. Eng. A 693 (2017) 111–120.
  • [17] Y. Imani, G. Besharati, M.K. Guillot, Improving friction stir welding between copper and 304L stainless steel, Adv. Mater. Res. 409 (2011) 263–268.
  • [18] T. Wang, S. Shukla, S.S. Nene, M. Frank, R.W. Wheeler, R.S. Mishra, Towards obtaining sound butt joint between metallurgically immiscible pure Cu and stainless steel through friction stir welding, Metal. Mater. Trans. A 49 (7) (2018) 2578–2582.
  • [19] C. Leitão, I. Galvão, R.M. Leal, D.M. Rodrigues, Determination of local constitutive properties of aluminium friction stir welds using digital image correlation, Mater. Des. 33 (2012) 69–74.
  • [20] S.G. Shiri, M. Nazarzadeh, M. Sharifitabar, M.S. Afarani, Gas tungsten arc welding of CP-copper to 304 stainless steel using different filler materials, Trans. Nonferrous Metals Soc. China 22 (12) (2012) 2937–2942.
  • [21] C.C. Chang, L.H.Wu, C. Shueh, C.K. Chan, I.C. Shen, C.K. Kuan, Evaluation of microstructure and mechanical properties of dissimilar welding of copper alloy and stainless steel, Int. J. Adv. Manuf. Technol. 91 (5) (2017) 2217–2224.
  • [22] M. Velu, S. Bhat, Metallurgical and mechanical examinations of steel–copper joints arc welded using bronze and nickelbase superalloy filler materials, Mater. Des. 47 (2013) 793–809.
  • [23] ASTM E8/E8M-16a, Standard Test Methods for Tension Testing of Metallic Materials, ASTM International, 2016.
  • [24] ASTM E23-12c, Standard Test Methods for Notched Bar Impact Testing of Metallic Materials, ASTM International, 2012.
  • [25] ASTM E384-17, Standard Test Method for Microindentation Hardness of Materials, ASTM International, 2017.
  • [26] S. Kou, Welding Metallurgy, 2nd ed., John Wiley & Sons, 2003.
  • [27] J.C. Lippold, Welding Metallurgy and Weldability, John Wiley & Sons, 2014.
  • [28] H. Chen, L. Fu, P. Liang, Microstructure, texture and mechanical properties of friction stir welded butt joints of 2A97 AlLi alloy ultra-thin sheets, J. Alloys Compd. 692 (2017) 155–169.
  • [29] S. Cui, Y. Shi, K. Sun, S. Gu, Microstructure evolution and mechanical properties of keyhole deep penetration TIG welds of S32101 duplex stainless steel, Mater. Sci. Eng. A 709 (2018) 214–222.
  • [30] E. Mortazavi, R.A. Najafabadi, A. Meysami, Effect of heat input on microstructure and mechanical properties of dissimilar joints of AISI 316L steel and API X70 highstrength low-alloy steel, J. Iron Steel Res. Int. 24 (12) (2017) 1248–1253.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-da0b5fc7-65ca-4faa-a869-127c637c8c2c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.