PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

T–S fuzzy BIBO stabilisation of non-linear systems under persistent perturbations using fuzzy Lyapunov functions and non-PDC control laws

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper develops an innovative approach for designing non-parallel distributed fuzzy controllers for continuous-time non-linear systems under persistent perturbations. Non-linear systems are represented using Takagi–Sugeno fuzzy models. These non-PDC controllers guarantee bounded input bounded output stabilisation in closed-loop throughout the computation of generalised inescapable ellipsoids. These controllers are computed with linear matrix inequalities using fuzzy Lyapunov functions and integral delayed Lyapunov functions. LMI conditions developed in this paper provide non-PDC controllers with a minimum ⋆-norm (upper bound of the 1-norm) for the T–S fuzzy system under persistent perturbations. The results presented in this paper can be classified into two categories: local methods based on fuzzy Lyapunov functions with guaranteed bounds on the first derivatives of membership functions and global methods based on integral-delayed Lyapunov functions which are independent of the first derivatives of membership functions. The benefits of the proposed results are shown through some illustrative examples.
Rocznik
Strony
529--550
Opis fizyczny
Bibliogr. 49 poz., rys., tab.
Twórcy
  • Institute of Control Systems and Industrial Computing (ai2), Polytechnic University of Valencia, Camino de Vera S/N, 46022 Valencia, Spain
  • Institute of Control Systems and Industrial Computing (ai2), Polytechnic University of Valencia, Camino de Vera S/N, 46022 Valencia, Spain
  • Institute of Control Systems and Industrial Computing (ai2), Polytechnic University of Valencia, Camino de Vera S/N, 46022 Valencia, Spain
  • Institute of Control Systems and Industrial Computing (ai2), Polytechnic University of Valencia, Camino de Vera S/N, 46022 Valencia, Spain
Bibliografia
  • [1] Abedor, J., Nagpal, K. and Poolla, K. (1996). Linear matrix inequality approach to peak-to-peak gain minimization, International Journal of Robust and Nonlinear Control 6(9–10): 899–927.
  • [2] Boyd, S., El Ghaoui, L., Feron, E. and Balakrishnan, V. (1994). Linear Matrix Inequalities in System and Control Theory, SIAM, Philadelphia, PA.
  • [3] Cherifi, A. (2017). Contribution à la commande des modèles Takagi–Sugeno: Approche non-quadratique et synthèse D-stable, PhD thesis, Ecole Doctorale Sciences, Technologies, Santè (Reims,Marne).
  • [4] Delmotte, F., Guerra, T.-M. and Ksantini, M. (2007). Continuous Takagi–Sugeno’s models: Reduction of the number of LMI conditions in various fuzzy control design technics, IEEE Transactions on Fuzzy Systems 15(3): 426–438.
  • [5] Gahinet, P., Nemirovski, A., Laub, A.J. and Chilali, M. (1995). LMI Control Toolbox, Technical report, The Mathworks Inc., Natick, MA.
  • [6] Guedes, J.A., Teixeira, M.C.M., Cardim, R. and Assunção, E. (2013). Stability of nonlinear system using Takagi–Sugeno fuzzy models and hyper-rectangle of LMIs, Journal of Control, Automation and Electrical Systems 24(1-2): 46–53.
  • [7] Guerra, T.M., Bernal, M., Guelton, K. and Labiod, S. (2012). Non-quadratic local stabilization for continuous-time Takagi–Sugeno models, Fuzzy Sets and Systems 201: 40–54.
  • [8] Guerra, T.M., Kruszewski, A., Vermeiren, L. and Tirmant, H. (2006). Conditions of output stabilization for nonlinear models in the Takagi–Sugeno’s form, Fuzzy Sets and Systems 157(9): 1248–1259.
  • [9] Guerra, T.M., Sala, A. and Tanaka, K. (2015). Fuzzy control turns 50: 10 Years later, Fuzzy Sets and Systems 281: 168–182.
  • [10] Guerra, T.M. and Vermeiren, L. (2004). LMI-based relaxed nonquadratic stabilization conditions for nonlinear systems in the Takagi–Sugeno’s form, Automatica 40(5): 823–829.
  • [11] Hauser, J., Sastry, S. and Kokotovic, P. (1992). Nonlinear control via approximate input-output linearization: The ball and beam example, IEEE Transactions on Automatic Control 37(3): 392–398.
  • [12] Hu, G., Liu, X., Wang, L. and Li, H. (2017). Relaxed stability and stabilisation conditions for continuous-time Takagi–Sugeno fuzzy systems using multiple-parameterised approach, IET Control Theory & Applications 11(6): 774–780.
  • [13] Hu, G., Liu, X., Wang, L. and Li, H. (2018). An extended approach to controller design of continuous-time Takagi–Sugeno fuzzy model, Journal of Intelligent & Fuzzy Systems 34(4): 2235–2246.
  • [14] Hu, G., Liu, X., Wang, L. and Li, H. (2019). Further study on local analysis of continuous-time T–S fuzzy models with bounded disturbances, IET Control Theory Applications 13(3): 403–410.
  • [15] Lam, H. (2018). A review on stability analysis of continuous-time fuzzy-model-based control systems: From membership-function-independent to membership-function-dependent analysis, Engineering Applications of Artificial Intelligence 67: 390–408.
  • [16] Lam, H. K., Xiao, B., Yu, Y., Yin, X., Han, H., Tsai, S.-H. and Chen, C.-S. (2016). Membership-function-dependent stability analysis and control synthesis of guaranteed cost fuzzy-model-based control systems, International Journal of Fuzzy Systems 18(4): 537.
  • [17] Lee, D.H., Joo, Y.H. and Tak, M.H. (2014). Local H∞ control and invariant set analysis for continuous-time T–S fuzzy systems with magnitude- and energy-bounded disturbances, 2014 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), Beijing, China, pp. 1990–1997.
  • [18] Lee, D.H. and Kim, D.W. (2014). Relaxed LMI conditions for local stability and local stabilization of continuous-time Takagi–Sugeno fuzzy systems, IEEE Transactions on Cybernetics 44(3): 394–405.
  • [19] Lee, D.H., Park, J.B. and Joo, Y.H. (2012). A fuzzy Lyapunov function approach to estimating the domain of attraction for continuous-time Takagi–Sugeno fuzzy systems, Information Sciences 185(1): 230–248.
  • [20] Liu, X. and Zhang, Q. (2003). Approaches to quadratic stability conditions and H∞ control designs for T–S fuzzy systems, IEEE Transactions on Fuzzy Systems 11(6): 830–838.
  • [21] Löfberg, J. (2004). YALMIP: A toolbox for modeling and optimization in MATLAB, Proceedings of the CACSD Conference, Taipei, Taiwan, pp. 284–289.
  • [22] Márquez, R., Guerra, T.M., Bernal, M. and Kruszewski, A. (2016). A non-quadratic Lyapunov functional for H∞ control of nonlinear systems via Takagi–Sugeno models, Journal of the Franklin Institute 353(4): 781–796.
  • [23] Márquez, R., Guerra, T.M., Bernal, M. and Kruszewski, A. (2017). Asymptotically necessary and sufficient conditions for Takagi–Sugeno models using generalized non-quadratic parameter-dependent controller design, Fuzzy Sets and Systems 306: 48–62.
  • [24] Mozelli, L.A. (2011). Novas Funções de Lyapunov Fuzzy e Soluções Numéricas para Análise de Estabilidade e Controle de Sistemas via Modelagem Takagi–Sugeno: Aproximando os Controles Fuzzy e Não-linear, PhD thesis, Universidade Federal de Minas Gerais, Belo Horizonte.
  • [25] Mozelli, L.A., Palhares, R.M. and Avellar, G.S. (2009). A systematic approach to improve multiple Lyapunov function stability and stabilization conditions for fuzzy systems, Information Sciences 179(8): 1149–1162.
  • [26] Pan, J.-T., Guerra, T.M., Fei, S.-M. and Jaadari, A. (2012). Nonquadratic stabilization of continuous T–S fuzzy models: LMI solution for a local approach, IEEE Transactions on Fuzzy Systems 20(3): 594–602.
  • [27] Qiu, J., Sun, K., Rudas, I. and Gao, H. (2019a). Command filter-based adaptive NN control for MIMO nonlinear systems with full-state constraints and actuator hysteresis, IEEE Transactions on Cybernetics 50(7): 2905–2915.
  • [28] Qiu, J., Sun, K., Wang, T. and Gao, H. (2019b). Observer-based fuzzy adaptive event-triggered control for pure-feedback nonlinear systems with prescribed performance, IEEE Transactions on Fuzzy Systems 27(11): 2152–2162.
  • [29] da Silva Campos, V.C., Nguyen, A.-T. and Palhares, R.M. (2017). A comparison of different upper-bound inequalities for the membership functions derivative, IFACPapersOnLine 50(1): 3001–3006.
  • [30] Sala, A. and Ariño, C. (2007). Asymptotically necessary and sufficient conditions for stability and performance in fuzzy control: Applications of Polya’s theorem, Fuzzy Sets and Systems 158(24): 2671–2686.
  • [31] Salcedo, J. and Martinez, M. (2008). BIBO stabilisation of Takagi–Sugeno fuzzy systems under persistent perturbations using fuzzy output-feedback controllers, IET Control Theory & Applications 2(6): 513–523.
  • [32] Salcedo, J.V., Martínez, M. and García-Nieto, S. (2008). Stabilization conditions of fuzzy systems under persistent perturbations and their application in nonlinear systems, Engineering Applications of Artificial Intelligence 21(8): 1264–1276.
  • [33] Salcedo, J.V., Martínez, M., García-Nieto, S. and Hilario, A. (2018). BIBO stabilisation of continuous-time Takagi–Sugeno systems under persistent perturbations and input saturation, International Journal of Applied Mathematics and Computer Science 28(3): 457–472, DOI: 10.2478/amcs-2018-0035.
  • [34] Sanchez Peña, R.S. and Sznaier, M. (1998). Robust Systems, Theory and Applications, JohnWiley and Sons, New York, NY.
  • [35] Scherer, C. and Weiland, S. (2000). Linear matrix inequalities in control, Technical Report 2, University of Stuttgart, Stuttgart.
  • [36] Sun, K.,Mou, S., Qiu, J.,Wang, T. and Gao, H. (2019). Adaptive fuzzy control for nontriangular structural stochastic switched nonlinear systems with full state constraints, IEEE Transactions on Fuzzy Systems 27(8): 1587–1601.
  • [37] Tanaka, K., Hori, T. and Wang, H.O. (2001). A fuzzy Lyapunov approach to fuzzy control system design, Proceedings of the 2001 American Control Conference, Arlington, VA, USA, Vol. 6, pp. 4790–4795.
  • [38] Tanaka, K., Ikeda, T. and Wang, H. (1998). Fuzzy regulators and fuzzy observers: Relaxed stability conditions and LMI-based designs, IEEE Transactions on Fuzzy Systems 6(2): 250–265.
  • [39] Tanaka, K. and Wang, H.O. (2001). Fuzzy Control Systems. Design and Analysis. A Linear Matrix Inequality Approach, John Wiley & Sons, New York, NY.
  • [40] Teixeira, M.C.M., Assunçao, E. and Avellar, R.G. (2003). On relaxed LMI-based designs for fuzzy regulators and fuzzy observers, IEEE Transactions on Fuzzy Systems 11(5): 613–623.
  • [41] Tuan, H., Apkarian, P., Narikiyo, T. and Yamamoto, Y. (2001). Parameterized linear matrix inequality techniques in fuzzy control system design, IEEE Transactions on Fuzzy Systems 9(2): 324–332.
  • [42] Vafamand, N. (2020a). Global non-quadratic Lyapunov-based stabilization of T–S fuzzy systems: A descriptor approach, Journal of Vibration and Control, DOI: 10.1177/1077546320904817.
  • [43] Vafamand, N. (2020b). Transient performance improvement of Takagi–Sugeno fuzzy systems by modified non-parallel distributed compensation controller, Asian Journal of Control, DOI: 10.1002/asjc.2340.
  • [44] Vafamand, N., Asemani, M.H. and Khayatian, A. (2017a). Robust L1 observer-based non-PDC controller design for persistent bounded disturbed T–S fuzzy systems, IEEE Transactions on Fuzzy Systems PP(99): 1.
  • [45] Vafamand, N., Asemani, M.H. and Khayatian, A. (2017b). TS fuzzy robust L1 control for nonlinear systems with persistent bounded disturbances, Journal of the Franklin Institute 354(14): 5854–5876.
  • [46] Vafamand, N., Asemani, M.H. and Khayatiyan, A. (2016). A robust L1 controller design for continuous-time TS systems with persistent bounded disturbance and actuator saturation, Engineering Applications of Artificial Intelligence 56: 212–221.
  • [47] Vafamand, N. and Shasadeghi, M. (2017). More relaxed non-quadratic stabilization conditions using T–S open loop system and control law properties, Asian Journal of Control 19(2): 467–481.
  • [48] Wang, L., Peng, J., Liu, X. and Zhang, H. (2015). Further study on local stabilization of continuous-time nonlinear systems presented as Takagi–Sugeno fuzzy model, Journal of Intelligent & Fuzzy Systems 29(1): 283–292.
  • [49] Yoneyama, J. (2017). New conditions for stability and stabilizaion of Takagi–Sugeno fuzzy systems, 11th Asian Control Conference (ASCC), Gold Coast, Australia, pp. 2154–2159.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-da0b3e4d-2bed-42e2-ab3c-43033d21599d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.