Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper the development and method of production of modern, Ni-free sintered structural steels containing Cr, Mn and Mo, enabling the production of structural sintered steels in industrial conditions, using safe, with low H2-content, sintering atmospheres is presented. For this purpose, the analysis of microstructure and mechanical properties of these sintered structural steels produced in different processing conditions and also the connections between the microstructure of sintered material and its mechanical properties, was presented. Following the investigations, the appropriate chemical composition of sintered Ni-free steels with properties which are comparable or even better than those of sintered structural steels containing rich and carcinogenic nickel was choosen. Additionally, in the paper the properties of electrolitically coated carbon steels were presented, as the beginning of investigation for improving the mechanical properties of alloyed, structural sintered steels.
Wydawca
Czasopismo
Rocznik
Tom
Strony
851--860
Opis fizyczny
Bibliogr. 56 poz., fot., tab.
Twórcy
autor
- AGH University of Science and Technology, Faculty of Metals Engineering and Industrial Computer Science, Al. Mickiewicza 30, 30-059 Kraków, Poland
autor
- AGH University of Science and Technology, Faculty of Metals Engineering and Industrial Computer Science, Al. Mickiewicza 30, 30-059 Kraków, Poland
autor
- Institute of Metal Science, Equipment and Technologies-BAS, 67 Shipchenski Prohod Blvd, 1574 Sofia, Bulgaria
autor
- Institute of Metal Science, Equipment and Technologies-BAS, 67 Shipchenski Prohod Blvd, 1574 Sofia, Bulgaria
Bibliografia
- [1] R. M. German, Powder metallurgy science, MPIF, Princeton, New Jersey (1984).
- [2] EU Carcinogenic Directives 90/394/EEC and 91/322/EEC.
- [3] S. C. Mitchell, A. S. Wronski, A. Cias, M. Stoytchev, Proc. of PM2TEC 1999, Vancouver, MPIF, Princeton 3, part 7, 129-143 (1999).
- [4] S. C. Mitchell, A. S. Wronski, A. Cias, Inżynieria Materiałowa 5, 633-646 (2001).
- [5] A. S. Wronski et al., Tough, Fatigue and Wear Resistance Sintered Gear Wheels. Final Report on EU Copernicus Contract no ERB CIPA-CT94-0108, European Commission (1998).
- [6] M. Sulowski, A. Cias, Inżynieria Materiałowa 4 (105), 1179-1182 (1998).
- [7] A. Cias, M. Sulowski, M. Stoytchev, Proc. of 7th European Conf. on Advanced Materials and Processes - EUROMAT 2001, June (2001).
- [8] R. Keresti, M. Selecka, A. Šalak, Proc. Int. Conf. DFPM’99, IMR Kosice, SAS, Slovakia 2, 108-111 (1999).
- [9] S. C. Mitchell, B. S. Becker, A. S. Wronski, Proc. 2000 PM World Congress, EMPA, Kyoto 2, part II, 923-926 (2000).
- [10] A. Cias, M. Stoytchev, A. S. Wronski, Proc. 2001 Int. Conf. on Powder Metallurgy and Particulate Materials, MPIF, Princeton, New Jersey 10, 131-140 (2001).
- [11] A. Šalak, Powder Metallurgy International 16 (6), 260-263 (1984).
- [12] A. Šalak, G. Leitner, W. Hermel, Powder Metallurgy International 13 (1), 21-45 (1981).
- [13] J. James, B. Lindsley, B. Rutz, K. S. Narasimhan, Proc. Euro PM2009, EPMA, Copenhagen, Denmark 1, 23-28 (2009).
- [14] B. Lindsley, J. James, Proc. 2010 PM World Congress&Exhibition, EPMA, Florence, Italy, 3 - Sintered steels - Low alloy steels, 151-158 (2010).
- [15] O. Bergman, S. Bengtsson, Proc. Euro PM2009, EPMA, Copenhagen, Denmark, 1 - Sintered steels II, 35-40 (2009).
- [16] E. Dudrova, M. Kabatova, R. Bidulsky, A. S. Wronski, Powder Metall. 47 (2), 181-190 (2004).
- [17] R. Bidulský, M.-A. Grande, Proc. 2010 PM World Congress&Exhibition, EPMA, Florence, Italy, 3 - Sintered Steels - Mechanical properties, 95-102 (2010).
- [18] E. Hryha, L. Nyborg, E. Dudrova, S. Bengtsson, Proc. Euro PM2009, EPMA, Copenhagen, Denmark, 1 - Sintered Steels I - Composition, 17-22 (2009).
- [19] E. Hryha, L. Nyborg, Proc. Euro PM2013 EPMA, Gothenburg, Sweden, 2 - Sintering - Atmospheres and Atmosphere Control, 333-338 (2013)
- [20] E. Hryha, L. Nyborg, L. Alzati, Proc. Euro PM2013, EPMA, Gothenburg, Sweden, 2 - Sintering - Fundamentals and Modelling, 303-310 (2012).
- [21] C. Gierl-Mayer, E. Klammer, M. Dlapka, H. Danninger, Proc. Euro PM2013, EPMA, Gothenburg, Sweden, 3 - Sintered Steels - Fatigue and Durability, 397-402 (2013).
- [22] A. Ciaś, Science of Sintering 47 (1), 61-69 (2015).
- [23] Metalog guide, Struers A/S, 1992.
- [24] G. Zapf, G. Hoffmann, K. Dalal , Powder Metall. 18 (35), 214-236 (1975).
- [25] F. Benesovsky, R. Kieffer, Berg- u. Huttenmann. Monatsh (8), 145-148 (1960)
- [26] K. Mauer H. Grewe, DEW-Techn. Ber, (4), 242 (1968)
- [27] A. Šalak, The International Journal of Powder Metallurgy and Powder Technology 16 (4), 369- 379 (1980).
- [28] M. Sułowski, A. Ciaś, Arch. Metall. Mater. 49 (1), 55-72 (2004).
- [29] M. Tenerowicz-Żaba, M. Sulowski, Science of Sintering 50 (4), 457-466 (2018).
- [30] M. Sulowski, Ph. D. Thesis, The structure and mechanical properties of structural sintered Fe-Mn-C steel, AGH UST, Cracow, Poland (2001).
- [31] Materials Standard for PM Structural Parts, MPIF, New Jersey (2016).
- [32] A. Šalak, M. Selecka, R. Bures, Powder Metallurgy Progress 1 (1), 41-58 (2000).
- [33] M. Tenerowicz, M. Sulowski, Arch. Metall. Mater. 62 (4), 2153-2163 (2017).
- [34] M. Sułowski, Arch. Metall. Mater. 49 (3), 641-670 (2004).
- [35] M. Sułowski, Arch. Metall. Mater. 50 (4), 827-841 (2005).
- [36] A. G. Süleyman Tekeli, High Temperature Materials and Processes 32 (2), 119-123 (2013).
- [37] M. Sułowski, Arch. Metall. Mater. 52 (4), 617-625 (2007).
- [38] M. Sułowski, K. Faryj, Arch. Metall. Mater. 54 (1), 121-127 (2009).
- [39] D. J. Bowe, K. R. Berger, J. G. Marsolen, D. Gorg, Int. J. of Powder Met. 31 (1),29-35 (1995)
- [40] A. Ciaś, M. Sułowski, Arch. Metall. Mater. 54 (4), 1093-1102 (2009).
- [41] M. Sułowski, A. Ciaś, Arch. Metall. Mater. 56 (2), 293-303 (2011).
- [42] M. Sułowski, P. Dudek, Arch. Metall. Mater. 53 (3), 827-837 (2008)
- [43] V. Petkov, R. Valov, M. Witkowska, M. Madej, G. Cempura, M. Sułowski, Arch. Metall. Mater. 64 (4), 1633-1638 (2019).
- [44] K. Przybyłowicz, Metaloznawstwo, WNT, Warszawa (1992).
- [45] M. Sulowski, Powder Metall. 53 (2), 125-140 (2010).
- [46] S. C. Mitchell, A. Cias, Powder Metallurgy Progress 4 (3), 132-142 (2004).
- [47] A. Ciaś, S. C. Mitchell, K. Pilch, H. Ciaś, Sułowski, A. S. Wronski, Powder Metall. 46 (2), 165-170 (2003).
- [48] T. Pieczonka, M. Suowski, A. Cias, Arch. Metall. Mater. 57 (4), 1001-1009 (2012).
- [49] M. Sułowski, A. Ciaś, T. Pieczonka, Arch. Metall. Mater. 59 (2), 575-580 (2014).
- [50] M. Sułowski, Arch. Metall. Mater. 59 (4), 1499-1505 (2014).
- [51] M. Sułowski, P. Kulecki, A. Radziszewska, Arch. Metall. Mater. 59 (4), 1507-1512 (2014).
- [52] M. Sułowski, M. Kabatova, E. Dudrova, Powder Metallurgy Progress 12 (2), 71-83 (2012).
- [53] A. Salak, Powder Metallurgy International 18 (4), 266-270 (1986).
- [54] W. Schatt, K.-P. Wieters, Powder Metallurgy – Processing and Materials, EPMA, (1997)
- [55] M. Sulowski, A. Cias, H. Frydrych, J. Frydrych, I. Olszewska, R. Golen, M. Sowa, Materials Science Forum 534-536 (1), 757-760 (2007).
- [56] M. Sulowski, M. Kabatova, E. Dudrova, Powder Metallurgy Progress 11 (1-2), 132-140 (2011)
Uwagi
EN
1. The work was realized as a part of fundamental research financed by AGH University of Science and Technology project number 16.16.110.663.
PL
2. Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-da09d368-f235-4965-ace3-b47e255515b7