PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Environmental contaminants of emerging concern: occurrence and remediation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Certain contaminants are termed as emerging (Contaminants of Emerging Concern, CEC) since all aspects of these pollutants are not known and their regulation is not ununiform across the nations. The CECs include many classes of compounds that are used in various industries, plant protection chemicals, personal care products and medicines. They accumulate in waterbodies, soils, organisms including humans. They cause deleterious effects on plant animal and human health. Therefore, alternative greener synthesis of these chemicals, sustainable economic methods of waste disposal, scaling up and circular methods using sludge for removing the contaminants are innovative methods that are pursued. There are several improvements in chemical waste treatments using electro-oxidation coupled with solar energy, high performing recycled granular activated charcoal derived from biomass are few advances in the field. Similarly, use of enzymes from microbes for waste removals is a widely used technique for bioremediation. The organisms are genetically engineered to remove hazardous chemicals, dyes, and metals. Novel technologies for mining economically the precious and rare earth elements from e-waste can improve circular economy. However, there is additional need for participation of various nations in working towards greener Earth. There should be pollution awareness in local communities that can work along with Government legislations.
Rocznik
Strony
57--77
Opis fizyczny
Bibliogr. 115 poz., rys., tab., wykr.
Twórcy
  • Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500 046, Telangana, India
  • Department of Nanotechnology Vision Research Foundation, Sankara Nethralaya, Chennai 600006 Tamil Nadu, India
Bibliografia
  • [1] Kroto HW, Zielińska M, Rajfur M, Wacławek M. The climate change crisis? Chem Didact Ecol Metrol. 2016;21:11-27. DOI: 10.1515/cdem-2016-0001.
  • [2] Crutzen PJ, Wacławek S. Atmospheric chemistry and climate in the anthropocene. Chem Didact Ecol Metrol. 2014;19: 9-28. DOI: 10.1515/cdem-2014-0001.
  • [3] Palmer E. Introduction: The Sustainable Development Goals Forum. J Glob Ethics. 2015;11:3-9. DOI: 10.1080/17449626.2015.1021091.
  • [4] Wu C-H, Tsai S-B, Liu W, Shao X-F, Sun R, Wacławek M. Eco-technology and eco-innovation for green sustainable growth. Ecol Chem Eng S. 2021;28:7-10. DOI: 10.2478/eces-2021-0001.
  • [5] Fetting C. The European Green Deal. ESDN Report. 2020. Available from: https://www.esdn.eu/fileadmin/ESDN_Reports/ESDN_Report_2_2020.pdf.
  • [6] Vara Prasad MN, Smol M, Freitas H. Achieving sustainable development goals via green deal strategies. Sustainable and Circular Management of Resources and Waste Towards a Green Deal. Elsevier; 2023. pp. 3-23. DOI: 10.1016/B978-0-323-95278-1.00002-4.
  • [7] Kirby A. Kick the habit: A UN guide to climate neutrality. 2008. DOI: 10.17226/23490.
  • [8] Adams S, Adedoyin F, Olaniran E, Bekun FV. Energy consumption, economic policy uncertainty and carbon emissions; causality evidence from resource rich economies. Econ Anal Policy. 2020;68:179-90. DOI: 10.1016/j.eap.2020.09.012.
  • [9] Sofuoğlu E, Kirikkaleli D. Towards achieving net zero emission targets and sustainable development goals, can long-term material footprint strategies be a useful tool? Environ Sci Pollut Res. 2022;30:26636-49. DOI: 10.1007/s11356-022-24078-2.
  • [10] Raihan A, Tuspekova A. Towards net zero emissions by 2050: the role of renewable energy, technological innovations, and forests in New Zealand. J Environ Sci Economics. 2023;2:1-16. DOI: 10.56556/jescae.v2i1.422.
  • [11] Esmaeili P, Balsalobre Lorente D, Anwar A. Revisiting the environmental Kuznetz curve and pollution haven hypothesis in N-11 economies: Fresh evidence from panel quantile regression. Environ Res. 2023;228:115844. DOI: 10.1016/ j.envres.2023. 115844.
  • [12] Lee BCY, Lim FY, Loh WH, Ong SL, Hu J. Emerging contaminants: An overview of recent trends for their treatment and management using light-driven processes. Water (Basel). 2021;13:2340. DOI: 10.3390/w13172340.
  • [13] Puri M, Gandhi K, Kumar MS. Emerging environmental contaminants: A global perspective on policies and regulations. J Environ Manage. 2023;332:117344. DOI: 10.1016/j.jenvman.2023.117344.
  • [14] Prasad MNV, Elchuri SV. Pharmaceuticals and personal care products in the environment with emphasis on horizontal transfer of antibiotic resistance genes. Chem Didact Ecol Metrol. 2022;27:35-51. DOI 10.2478/cdem-2022-0005.
  • [15] Hanun JN, Hassan F, Jiang J-J. Occurrence, fate, and sorption behavior of contaminants of emerging concern to microplastics: Influence of the weathering/aging process. J Environ Chem Eng. 2021;9:106290. DOI: 10.1016/j.jece.2021.106290.
  • [16] Pittura L, Gorbi S, León VM, Bellas J, Campillo González JA, Albentosa M, et al. Microplastics and nanoplastics in the marine environment. Contaminants of Emerging Concern in the Marine Environment. Elsevier; 2023. pp. 311-48. DOI: 10.1016/B978-0-323-90297-7.00004-4.
  • [17] Archer E, Holton E, Fidal J, Kasprzyk-Hordern B, Carstens A, Brocker L, et al. Occurrence of contaminants of emerging concern in the Eerste River, South Africa: Towards the optimisation of an urban water profiling approach for public- and ecological health risk characterisation. Sci Total Environ. 2023;859:160254. DOI: 10.1016/j.scitotenv.2022.160254.
  • [18] Arsand JB, Dallegrave A, Jank L, Feijo T, Perin M, Hoff RB, et al. Spatial-temporal occurrence of contaminants of emerging concern in urban rivers in southern Brazil. Chemosphere. 2023;311:136814. DOI: 10.1016/j.chemosphere.2022.136814.
  • [19] Roznere I, An V, Robinson T, Banda JA, Watters GT. Contaminants of emerging concern in the Maumee River and their effects on freshwater mussel physiology. PLoS ONE. 2023;18:e0280382. DOI: 10.1371/journal.pone.0280382.
  • [20] Campos S, Lorca J, Vidal J, Calzadilla W, Toledo-Neira C, Aranda M, et al. Removal of contaminants of emerging concern by solar photo electro-Fenton process in a solar electrochemical raceway pond reactor. Process Safety Environ Protect. 2023;169:660-70. DOI: 10.1016/j.psep.2022.11.033.
  • [21] Mohamed BA, Hamid H, Montoya-Bautista CV, Li LY. Circular economy in wastewater treatment plants: Treatment of contaminants of emerging concerns (CECs) in effluent using sludge-based activated carbon. J Clean Prod. 2023;389:136095. DOI: 10.1016/j.jclepro.2023.136095.
  • [22] Soker O, Hao S, Trewyn BG, Higgins CP, Strathmann TJ. Application of hydrothermal alkaline treatment to spent granular activated carbon: destruction of adsorbed PFASs and adsorbent regeneration. Environ Sci Technol Lett. 2023;10:425-30. DOI: 10.1021/acs.estlett.3c00161.
  • [23] Martín de Vidales MJ, Prieto R, Galán-Lucarelli G, Atanes-Sánchez E, Fernández-Martínez F. Removal of contaminants of emerging concern by photocatalysis with a highly ordered TiO2 nanotubular array catalyst. Catal Today. 2023;413-5: 113995. DOI: 10.1016/j.cattod.2023.01.002.
  • [24] Arun J, Nachiappan S, Rangarajan G, Alagappan RP, Gopinath KP, Lichtfouse E. Synthesis and application of titanium dioxide photocatalysis for energy, decontamination and viral disinfection: a review. Environ Chem Lett. 2023;21:339-62. DOI: 10.1007/s10311-022-01503-z.
  • [25] Mahmoudnia A, Mehrdadi N, Baghdadi M, Moussavi G. Change in global PFAS cycling as a response of permafrost degradation to climate change. J Hazard Mater Adv. 2022;5:100039. DOI: 10.1016/j.hazadv.2021.100039.
  • [26] Xu B, Liu S, Zhou JL, Zheng C, Weifeng J, Chen B, et al. PFAS and their substitutes in groundwater: Occurrence, transformation and remediation. J Hazard Mater. 2021;412:125159. DOI: 10.1016/J.JHAZMAT.2021.125159.
  • [27] Available from: https://www.epa.gov/comptox-tools/comptox-chemicals-dashboard.
  • [28] Glüge J, Scheringer M, Cousins IT, DeWitt JC, Goldenman G, Herzke D, et al. An overview of the uses of per- and polyfluoroalkyl substances (PFAS). Environ Sci Process Impacts. 2020;22:2345-73. DOI: 10.1039/D0EM00291G.
  • [29] Christensen BT, Calkins MM. Occupational exposure to per- and polyfluoroalkyl substances: a scope review of the literature from 1980-2021. J Expo Sci Environ Epidemiol. 2023. DOI: 10.1038/s41370-023-00536-y.
  • [30] Dal Ferro N, Pelliszaro A, Fant M, Zerlottin M, Borin M. Uptake and translocation of perfluoroalkyl acids by hydroponically grown lettuce and spinach exposed to spiked solution and treated wastewaters. Sci Total Environ. 2021;772:145523. DOI: 10.1016/j.scitotenv.2021.145523.
  • [31] Khan B, Burgess RM, Cantwell MG. Occurrence and bioaccumulation patterns of per- and polyfluoroalkyl substances (PFAS) in the marine environment. ACS EST Water. 2023;3:1243-59. DOI: 10.1021/acsestwater.2c00296.
  • [32] Washington JW, Rosal CG, McCord JP, Strynar MJ, Lindstrom AB, Bergman EL, et al. Nontargeted mass-spectral detection of chloroperfluoropolyether carboxylates in New Jersey soils. Science. 2020;368:1103-7. DOI: 10.1126/science.aba7127.
  • [33] Sun X, Yu W, Min L, Han L, Hua X, Shi J, et al. Synthesis, structural determination, and antifungal activity of novel fluorinated quinoline analogs. Molecules. 2023;28. DOI: 10.3390/molecules28083373.
  • [34] Ogawa Y, Tokunaga E, Kobayashi O, Hirai K, Shibata N. Current contributions of organofluorine compounds to the agrochemical industry. iScience. 2020;23: 101467. DOI: 10.1016/j.isci.2020.101467.
  • [35] Inoue M, Sumii Y, Shibata N. Contribution of organofluorine compounds to pharmaceuticals. ACS Omega. 2020;5:10633-40. DOI: 10.1021/acsomega.0c00830.
  • [36] Evich MG, Davis MJB, McCord JP, Acrey B, Awkerman JA, Knappe DRU, et al. Per- and polyfluoroalkyl substances in the environment. Science. 1979;2022:375. DOI: 10.1126/science.abg9065.
  • [37] Gold SC, Wagner WE. Filling gaps in science exposes gaps in chemical regulation. Science. 2020;368:1066-8. DOI: 10.1126/science.abc1250.
  • [38] Xu Y, Nielsen C, Li Y, Hammarstrand S, Andersson EM, Li H, et al. Serum perfluoroalkyl substances in residents following long-term drinking water contamination from firefighting foam in Ronneby, Sweden. Environ Int. 2021;147:106333. DOI: 10.1016/j.envint.2020.106333.
  • [39] Smalling KL, Romanok KM, Bradley PM, Morriss MC, Gray JL, Kanagy LK, et al. Per- and polyfluoroalkyl substances (PFAS) in United States tapwater: Comparison of underserved private-well and public-supply exposures and associated health implications. Environ Int. 2023;108033. DOI: 10.1016/j.envint.2023.108033.
  • [40] Liu Y, Wosu AC, Fleisch AF, Dunlop AL, Starling AP, Ferrara A, et al. Associations of gestational perfluoroalkyl substances exposure with early childhood BMI z-Scores and risk of overweight/obesity: Results from the ECHO cohorts. Environ Health Perspect. 2023;131:67001. DOI: 10.1289/EHP11545.
  • [41] Taibl KR, Dunlop AL, Barr DB, Li Y-Y, Eick SM, Kannan K, et al. Newborn metabolomic signatures of maternal per- and polyfluoroalkyl substance exposure and reduced length of gestation. Nat Commun. 2023;14:3120. DOI: 10.1038/s41467-023-38710-3.
  • [42] Xu Y, Jakobsson K, Harari F, Andersson EM, Li Y. Exposure to high levels of PFAS through drinking water is associated with increased risk of type 2 diabetes - findings from a register-based study in Ronneby, Sweden. Environ Res. 2023;225:115525. DOI: 10.1016/J.ENVRES.2023.115525.
  • [43] Goodrich JA, Walker D, Lin X, Wang H, Lim T, McConnell R, et al. Exposure to perfluoroalkyl substances and risk of hepatocellular carcinoma in a multiethnic cohort. JHEP Reports. 2022;4:100550. DOI: 10.1016/j.jhepr.2022.100550.
  • [44] Available from: https://pfas-1.itrcweb.org/2-2-chemistry-terminology-and-acronyms/?print=pdf.
  • [45] Lu J, Lu H, Liang D, Feng S, Li Y, Li J. A review of the occurrence, monitoring, and removal technologies for the remediation of per- and polyfluoroalkyl substances (PFAS) from landfill leachate. Chemosphere. 2023;332:138824. DOI: 10.1016/j.chemosphere.2023.138824.
  • [46] Cardoso IMF, Pinto da Silva L, Esteves da Silva JCG. Nanomaterial-based advanced oxidation/reduction processes for the degradation of PFAS. Nanomaterials. 2023;13:1668. DOI: 10.3390/nano13101668.
  • [47] Meng Y, Chen G, Huang M. Piezoelectric materials: Properties, advancements, and design strategies for high-temperature applications. Nanomaterials. 2022;12:1171. DOI: 10.3390/nano12071171.
  • [48] Yang N, Yang S, Ma Q, Beltran C, Guan Y, Morsey M, et al. Solvent-free nonthermal destruction of PFAS chemicals and PFAS in sediment by piezoelectric ball milling. Environ Sci Technol Lett. 2023;10:198-203. DOI: 10.1021/acs.estlett.2c00902.
  • [49] Wang K, Han C, Li J, Qiu J, Sunarso J, Liu S. The mechanism of piezocatalysis: Energy band theory or screening charge effect? Angew Chemie. 2022;134. DOI: 10.1002/ange.202110429.
  • [50] Hasanuzzaman M, Prasad MNV. Handbook of Bioremediation: Physiological, Molecularand Biotechnological Interventions. 2021. DOI: 10.1016/B978-0-12-819382-2.09991-9.
  • [51] Harris JD, Coon CM, Doherty ME, McHugh EA, Warner MC, Walters CL, et al. Engineering and characterisation of dehalogenase enzymes from Delftia acidovorans in bioremediation of perfluorinated compounds. Synth Syst Biotechnol. 2022;7:671-6. DOI: 10.1016/j.synbio.2022.02.005.
  • [52] Marchetto F, Roverso M, Righetti D, Bogialli S, Filippini F, Bergantino E, et al. Bioremediation of per- and poly-fluoroalkyl substances (PFAS) by Synechocystis sp. PCC 6803: A chassis for a synthetic biology approach. Life. 2021;11:1300. DOI: 10.3390/life11121300.
  • [53] Li J, Li X, Da Y, Yu J, Long B, Zhang P, et al. Sustainable environmental remediation via biomimetic multifunctional lignocellulosic nano-framework. Nat Commun. 2022;13:4368. DOI: 10.1038/s41467-022-31881-5.
  • [54] Zhu J, Wallis I, Guan H, Ross K, Whiley H, Fallowfield H. Juncus sarophorus, a native Australian species, tolerates and accumulates PFOS, PFOA and PFHxS in a glasshouse experiment. Sci Total Environ. 2022;826:154184. DOI: 10.1016/j.scitotenv.2022.154184.
  • [55] Awad J, Brunetti G, Juhasz A, Williams M, Navarro D, Drigo B, et al. Application of native plants in constructed floating wetlands as a passive remediation approach for PFAS-impacted surface water. J Hazard Mater. 2022;429:128326. DOI: 10.1016/j.jhazmat.2022.128326.
  • [56] Amaro Bittencourt G, Vandenberghe LP de S, Martínez-Burgos WJ, Valladares-Diestra KK, Murawski de Mello AF, Maske BL, et al. Emerging contaminants bioremediation by enzyme and nanozyme-based processes - A review. iScience. 2023;26:106785. DOI: 10.1016/j.isci.2023.106785.
  • [57] Cousins IT, Goldenman G, Herzke D, Lohmann R, Miller M, Ng CA, et al. The concept of essential use for determining when uses of PFASs can be phased out. Environ Sci Process Impacts. 2019;21:1803-15. DOI: 10.1039/C9EM00163H.
  • [58] Cousins IT, De Witt JC, Glüge J, Goldenman G, Herzke D, Lohmann R, et al. Finding essentiality feasible: common questions and misinterpretations concerning the “essential-use” concept. Environ Sci Process Impacts. 2021;23:1079-87. DOI: 10.1039/D1EM00180A.
  • [59] Scholz S, Brack W, Escher BI, Hackermüller J, Liess M, von Bergen M, et al. The EU chemicals strategy for sustainability: an opportunity to develop new approaches for hazard and risk assessment. Arch Toxicol. 2022;96:2381-6. DOI: 10.1007/s00204-022-03313-2.
  • [60] Bǎlan SA, Andrews DQ, Blum A, Diamond ML, Fernández SR, Harriman E, et al. Optimising chemicals management in the United States and Canada through the essential-use approach. Environ Sci Technol. 2023;57:1568-75. DOI: 10.1021/acs.est.2c05932.
  • [61] Nason SL, Stanley CJ, PeterPaul CE, Blumenthal MF, Zuverza-Mena N, Silliboy RJ. A community based PFAS phytoremediation project at the former Loring Airforce Base. iScience. 2021;24:102777. DOI: 10.1016/j.isci.2021.102777.
  • [62] Manikandan A, Sathiyabama M. Preparation of chitosan nanoparticles and its effect on detached rice leaves infected with Pyricularia grisea. Int J Biol Macromol. 2016;84:58-61. DOI: 10.1016/j.ijbiomac.2015.11.083.
  • [63] Liang W, Yu A, Wang G, Zheng F, Hu P, Jia J, et al. A novel water-based chitosan-La pesticide nanocarrier enhancing defense responses in rice (Oryza sativa L) growth. Carbohydr Polym. 2018;199:437-44. DOI: 10.1016/ j.carbpol.2018.07.042.
  • [64] Ale A, Andrade VS, Gutierrez MF, Bacchetta C, Rossi AS, Orihuela PS, et al. Nanotechnology-based pesticides: Environmental fate and ecotoxicity. Toxicol Appl Pharmacol. 2023;471:116560. DOI: 10.1016/j.taap.2023.116560.
  • [65] Grillo R, Fraceto LF, Amorim MJB, Scott-Fordsmand JJ, Schoonjans R, Chaudhry Q. Ecotoxicological and regulatory aspects of environmental sustainability of nanopesticides. J Hazard Mater. 2021;404:124148. DOI: 10.1016/ j.jhazmat.2020.124148.
  • [66] Wang X, Xie H, Wang Z, He K, Jing D. Graphene oxide as a multifunctional synergist of insecticides against lepidopteran insect. Environ Sci Nano. 2019;6:75-84. DOI: 10.1039/C8EN00902C.
  • [67] Jha AK, Chakraborty S. Environmental application of graphene and its forms for wastewater treatment: A sustainable solution toward improved public health. Appl Biochem Biotechnol. 2023. DOI: 10.1007/s12010-023-04381-5.
  • [68] Feba Mohan M, Praseetha PN. Prospects of biopolymers based nanocomposites for the slow and controlled release of agrochemicals formulations. J Inorg Organomet Polym Mater. 2023. DOI: 10.1007/s10904-023-02695-9.
  • [69] Jadhav C, Khillare LD, Bhosle MR. Efficient sonochemical protocol for the facile synthesis of dipyrimido-dihydropyridine and pyrimido[4,5-d]pyrimidines in aqueous β-cyclodextrin. Synth Commun. 2018;48:233-46. DOI: 10.1080/00397911.2017.1390685.
  • [70] Yin J, Su X, Yan S, Shen J. Multifunctional nanoparticles and nanopesticides in agricultural application. Nanomaterials. 2023;13:1255. DOI: 10.3390/ nano 13071255.
  • [71] Giger M, Musselli I. Could global norms enable definition of sustainable farming systems in a transformative international trade system? Discover Sustain. 2023;4:18. DOI 10.1007/s43621-023-00130-0.
  • [72] de Oliveira Neto JF, Candido LA, de Freitas Dourado AB, Santos SM, Florencio L. Waste of electrical and electronic equipment management from the perspective of a circular economy: A review. Waste Manage Res. 2023;41:760-80. DOI: 10.1177/0734242X221135341.
  • [73] Lase IS, Ragaert K, Dewulf J, De Meester S. Multivariate input-output and material flow analysis of current and future plastic recycling rates from waste electrical and electronic equipment: The case of small household appliances. Resour Conserv Recycl. 2021;174:105772. DOI: 10.1016/j.resconrec.2021.105772.
  • [74] Gulliani S, Volpe M, Messineo A, Volpe R. Recovery of metals and valuable chemicals from waste electric and electronic materials: A critical review of existing technologies. RSC Sustain. 2023. DOI: 10.1039/D3SU00034F.
  • [75] Cesiulis H, Tsyntsaru N. Eco-friendly electrowinning for metals recovery from waste electrical and electronic equipment (WEEE). Coatings. 2023;13:574. DOI: 10.3390/coatings13030574.
  • [76] Lebbie TS, Moyebi OD, Asante KA, Fobil J, Brune-Drisse MN, Suk WA, et al. E-waste in Africa: A serious threat to the health of children. Int J Environ Res Public Health. 2021;18:8488. DOI: 10.3390/ijerph18168488.
  • [77] Ozturk M, Metin M, Altay V, Prasad MNV, Gul A, Bhat RA, et al. Role of rare earth elements in plants. Plant Mol Biol Report. 2023. DOI: 10.1007/s11105-023-01369-7.
  • [78] Cheisson T, Schelter EJ. Rare earth elements: Mendeleev’s bane, modern marvels. Science. 2019;363:489-93. DOI: 10.1126/science.aau7628.
  • [79] Leducq J-B, Sneddon D, Santos M, Condrain-Morel D, Bourret G, Martinez-Gomez NC, et al. Comprehensive phylogenomics of methylobacterium reveals four evolutionary distinct groups and underappreciated phyllosphere diversity. Genome Biol Evol. 2022;14. DOI: 10.1093/gbe/evac123.
  • [80] Mattocks JA, Cotruvo JA, Deblonde GJ-P. Engineering lanmodulin’s selectivity for actinides over lanthanides by controlling solvent coordination and second-sphere interactions. Chem Sci. 2022;13:6054-66. DOI: 10.1039/d2sc01261h.
  • [81] Mattocks JA, Jung JJ, Lin C-Y, Dong Z, Yennawar NH, Featherston ER, et al. Enhanced rare-earth separation with a metal-sensitive lanmodulin dimer. Nature. 2023;618:87-93. DOI: 10.1038/s41586-023-05945-5.
  • [82] Ramprasad C, Gwenzi W, Chaukura N, Isyan Wan Azelee N, Upamali Rajapaksha A, Naushad M, et al. Strategies and options for the sustainable recovery of rare earth elements from electrical and electronic waste. Chem Eng J. 2022;442:135992. DOI: 10.1016/ j.cej.2022.135992.
  • [83] Balaram V. Rare earth elements: A review of applications, occurrence, exploration, analysis, recycling, and environmental impact. Geosci Front. 2019;10:1285-303. DOI: 10.1016/j.gsf.2018.12.005.
  • [84] Lahtela V, Hamod H, Kärki T. Assessment of critical factors in waste electrical and electronic equipment (WEEE) plastics on the recyclability: A case study in Finland. Sci Total Environ. 2022;830:155627. DOI: 10.1016/j.scitotenv.2022.155627.
  • [85] de Jonker M, Leonards PEG, Lamoree MH, Brandsma SH. A rapid screening method for the detection of additives in electronics and plastic consumer products using AP-MALDI-qTOF-MS. Toxics. 2023;11. DOI: 10.3390/toxics11020108.
  • [86] Shreyas Madhav A, Rajaraman R, Harini S, Kiliroor CC. Application of artificial intelligence to enhance collection of E-waste: A potential solution for household WEEE collection and segregation in India. Waste Management & Research: J Sustain Circular Economy. 2022;40:1047-53. DOI: 10.1177/0734242X211052846.
  • [87] Zhu P, Shen Y, Li X, Liu X, Qian G, Zhou J. Feeding preference of insect larvae to waste electrical and electronic equipment plastics. Sci Total Environ. 2022;807:151037. DOI: 10.1016/j.scitotenv.2021.151037
  • [88] Yang X-G, Wen P-P, Yang Y-F, Jia P-P, Li W-G, Pei D-S. Plastic biodegradation by in vitro environmental microorganisms and in vivo gut microorganisms of insects. Front Microbiol. 2023;13. DOI: 10.3389/fmicb.2022.1001750.
  • [89] Kye H, Kim J, Ju S, Lee J, Lim C, Yoon Y. Microplastics in water systems: A review of their impacts on the environment and their potential hazards. Heliyon. 2023;9:e14359. DOI: 10.1016/j.heliyon.2023.e14359.
  • [90] Anand U, Dey S, Bontempi E, Ducoli S, Vethaak AD, Dey A, et al. Biotechnological methods to remove microplastics: a review. Environ Chem Lett. 2023;21:1787-810. DOI: 10.1007/s10311-022-01552-4.
  • [91] Kabir MS, Wang H, Luster-Teasley S, Zhang L, Zhao R. Microplastics in landfill leachate: Sources, detection, occurrence, and removal. Environ Sci Ecotechnol. 2023;16:100256. DOI: 10.1016/J.ESE.2023.100256.
  • [92] Wani AK, Akhtar N, Naqash N, Rahayu F, Djajadi D, Chopra C, et al. Discovering untapped microbial communities through metagenomics for microplastic remediation: recent advances, challenges, and way forward. Environ Sci Pollut Res. 2023. DOI: 10.1007/s11356-023-25192-5.
  • [93] Strokal M, Strokal V, Kroeze C. The future of the Black Sea: More pollution in over half of the rivers. Ambio. 2023;52:339-56. DOI: 10.1007/s13280-022-01780-6.
  • [94] Evans S, Campbell C, Naidenko OV. Analysis of cumulative cancer risk associated with disinfection byproducts in united states drinking water. Int J Environ Res Public Health. 2020;17:2149. DOI: 10.3390/ijerph17062149.
  • [95] Wright JM, Evans A, Kaufman JA, Rivera-Núñez Z, Narotsky MG. Disinfection by-product exposures and the risk of specific cardiac birth defects. Environ Health Perspect. 2017;125:269-77. DOI: 10.1289/EHP103.
  • [96] Wu M, Liang Y, Zhang Y, Xu H, Liu W. The effects of biodegradation on the characteristics and disinfection by-products formation of soluble microbial products chemical fractions. Environ Pollut. 2019;253:1047-55. DOI: 10.1016/j.envpol.2019.07.112.
  • [97] Liu W, Zhang Z, Yang X, Xu Y, Liang Y. Effects of UV irradiation and UV/chlorine co-exposure on natural organic matter in water. Sci Total Environ. 2012;414:576-84. DOI: 10.1016/ j.scitotenv.2011.11.031.
  • [98] Richardson SD, Postigo C. Drinking Water Disinfection By-products. 2011. pp. 93-137. DOI: 10.1007/698_2011_125.
  • [99] von Gunten U. Ozonation of drinking water: Part I. Oxidation kinetics and product formation. Water Res. 2003;37:1443-67. DOI: 10.1016/S0043-1354(02)00457-8.
  • [100] von Gunten U. Ozonation of drinking water: Part II. Disinfection and by-product formation in presence of bromide, iodide or chlorine. Water Res. 2003;37:1469-87. DOI: 10.1016/S0043-1354(02)00458-X.
  • [101] Westerhoff P, Song R, Amy G, Minear R. NOM’s role in bromine and bromate formation during ozonation. J Am Water Works Assoc. 1998;90:82-94. DOI: 10.1002/j.1551-8833.1998.tb08380.x.
  • [102] Heeb MB, Criquet J, Zimmermann-Steffens SG, von Gunten U. Oxidative treatment of bromide-containing waters: Formation of bromine and its reactions with inorganic and organic compounds - A critical review. Water Res. 2014;48:15-42. DOI: 10.1016/j.watres.2013.08.030.
  • [103] Sarma H, Islam NF, Prasad R, Prasad MNV, Ma LQ, Rinklebe J. Enhancing phytoremediation of hazardous metal(loid)s using genome engineering CRISPR-Cas9 technology. J Hazard Mater. 2021;414:125493. DOI: 10.1016/j.jhazmat.2021.125493.
  • [104] Janakiraman N, Badrinarayanan L, Ratra D, Elchuri S V. One Health Approach for Eye Care. One Health. Wiley; 2023. pp. 221-41. DOI: 10.1002/9781119867333.ch17.
  • [105] Biswas JK, Mukherjee P, Vithanage M, Prasad MNV. Emergence and re‐emergence of emerging infectious diseases (EIDs). One Health. Wiley; 2023. pp. 19-37. DOI: 10.1002/9781119867333.ch2.
  • [106] Prasad MNV. Resource Recovery from Urban Flood, Municipal and Industrial Wastewaters in the Context Remediation Technologies and Circular Economy. 2023. pp. 103-20. DOI: 10.1007/978-3-031-18165-8_8.
  • [107] Prasad MNV. Microplastics - Global Scenario. Microplastics in the Ecosphere. Wiley; 2023. pp. 29-63. DOI: 10.1002/9781119879534.ch3.
  • [108] Gunarathne V, Vithanage M, Rinklebe J. Per‐ and Polyfluoroalkyl Substances (PFAS) Migration from Water to Soil-Plant Systems, Health Risks, and Implications for Remediation. In: Vithanage M, Prasad MNV, editors. One Health. Wiley; 2023. pp. 133-46. DOI: 10.1002/9781119867333.ch10.
  • [109] Wijesooriya M, Wijesekara H, Sewwandi M, Soysa S, Rajapaksha AU, Vithanage M, et al. Microplastics and Soil Nutrient Cycling. In: Vithanage M, Prasad M, editors. Microplastics in the Ecosphere. Wiley; 2023. pp. 321-38. DOI: 10.1002/9781119879534.ch19.
  • [110] Botha TL, Bamuza-Pemu E, Roopnarain A, Ncube Z, De Nysschen G, Ndaba B, et al. Development of a GIS-based knowledge hub for contaminants of emerging concern in South African water resources using open-source software: Lessons learnt. Heliyon. 2023;9:e13007. DOI: 10.1016/j.heliyon.2023.e13007.
  • [111] The world’s plan to make humanity sustainable is failing. Science can do more to save it. Nature. 2023;618:647. DOI: 10.1038/d41586-023-01989-9.
  • [112] How science can put the Sustainable Development Goals back on track. Nature. 2021;589:329-30. DOI: 10.1038/d41586-021-00104-0.
  • [113] Vulnerable nations lead by example on Sustainable Development Goals research. Nature. 2021;595:472. DOI: 10.1038/d41586-021-01992-y.
  • [114] Basu S, Rabara RC, Negi S, Shukla P. Engineering PGPMOs through gene editing and systems biology: a solution for phytoremediation? Trends Biotechnol. 2018;36:499-510. DOI: 10.1016/j.tibtech.2018.01.011.
  • [115] Sarma H, Islam NF, Prasad R, Prasad MNV, Ma LQ, Rinklebe J. Enhancing phytoremediation of hazardous metal(loid)s using genome engineering CRISPR-Cas9 technology. J Hazard Mater. 2021;414:125493. DOI: 10.1016/j.jhazmat. 2021.125493.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-da050766-1507-4501-a0ae-54c96d262a2d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.