PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Ensemble Model for Network Intrusion Detection System Based on Bagging Using J48

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Technology is rising on daily basis with the advancement in web and artificial intelligence (AI), and big data developed by machines in various industries. All of these provide a gateway for cybercrimes that makes network security a challenging task. There are too many challenges in the development of NID systems. Computer systems are becoming increasingly vulnerable to attack as a result of the rise in cybercrimes, the availability of vast amounts of data on the internet, and increased network connection. This is because creating a system with no vulnerability is not theoretically possible. In the previous studies, various approaches have been developed for the said issue each with its strengths and weaknesses. However, still there is a need for minimal variance and improved accuracy. To this end, this study proposes an ensemble model for the said issue. This model is based on Bagging with J48 Decision Tree. The proposed models outperform other employed models in terms of improving accuracy. The outcomes are assessed via accuracy, recall, precision, and f-measure. The overall average accuracy achieved by the proposed model is 83.73%.
Twórcy
  • Department of Computer Science and Information, College of Science in Zulfi, Majmaah University, Al-Majmaah 11952, Saudi Arabia
  • Department of Computer Science and Information, College of Science in Zulfi, Majmaah University, Al-Majmaah 11952, Saudi Arabia
  • Department of Computer Science and Information, College of Science in Zulfi, Majmaah University, Al-Majmaah 11952, Saudi Arabia
Bibliografia
  • 1. Jiang H., He Z., Ye G., Zhang H. Network Intrusion Detection Based on PSO-Xgboost Model. IEEE Access. 2020; 8: 58392–401.
  • 2. Dahiya P., Srivastava D.K. Network Intrusion Detection in Big Dataset Using Spark. Procedia Computer Science [Internet]. 2018; 132: 253–62. https://doi.org/10.1016/j.procs.2018.05.169.
  • 3. Selvakumar B., Muneeswaran K. Firefly algorithm based feature selection for network intrusion detection. Computers and Security [Internet]. 2019;81:148–55. https://doi.org/10.1016/j.cose.2018.11.005.
  • 4. Sarker I., Abushark Y., Alsolami F. Symmetry AK-, 2020 undefined. Intrudtree: a machine learning based cyber security intrusion detection model. mdpi.com.
  • 5. Rahman M., Asyhari A., Leong L, ... GS-SC and, 2020 undefined. Scalable machine learning-based intrusion detection system for IoT-enabled smart cities. Elsevier.
  • 6. Jin D., Lu Y., Qin J., Cheng Z. Security ZM-C&, 2020 undefined. SwiftIDS: Real-time intrusion detection system based on LightGBM and parallel intrusion detection mechanism. Elsevier.
  • 7. Kilincer I., Ertam F. Networks AS-C, 2021 undefined. Machine learning methods for cyber security intrusion detection: Datasets and comparative study. Elsevier.
  • 8. Ashoor A.S., Gore S. Difference between Intrusion Detection System (IDS) and Intrusion Prevention System (IPS). Communications in Computer and Information Science. 2011; 196 CCIS: 497–501.
  • 9. Bamakan S., Amiri B. MM-PC, 2015 undefined. A new intrusion detection approach using PSO based multiple criteria linear programming. Elsevier.
  • 10. Bertoli G., Júnior L. OS-I, 2021 undefined. An end-to-end framework for machine learning-based network intrusion detection system. ieeexplore.ieee.org.
  • 11. Sarnovsky M., Paralic J. Hierarchical intrusion detection using machine learning and knowledge model. Symmetry. 2020; 12(2): 1–14.
  • 12. Maseer Z.K., Yusof R., Bahaman N., Mostafa S.A., Foozy CFM. Benchmarking of Machine Learning for Anomaly Based Intrusion Detection Systems in the CICIDS2017 Dataset. IEEE Access. 2021; 9: 22351–70.
  • 13. Dini P., Saponara S. Analysis, design, and comparison of machine-learning techniques for networking intrusion detection. Designs. 2021; 5(1): 1–22.
  • 14. Kim T., Pak W. Hybrid Classification for HighSpeed and High-Accuracy Network Intrusion Detection System. IEEE Access. 2021; 9: 83806–17.
  • 15. Alqahtani H., Sarker I.H., Kalim A., Minhaz Hossain S.M., Ikhlaq S., Hossain S. Cyber intrusion detection using machine learning classification techniques. Vol. 1235 CCIS, Communications in Computer and Information Science. Springer Singapore; 2020; 121–131.
  • 16. Liu J., Kantarci B., Adams C. Machine learning-driven intrusion detection for Contiki-NG-based IoT networks exposed to NSL-KDD dataset. WiseML 2020 – Proceedings of the 2nd ACM Workshop on Wireless Security and Machine Learning. 2020; 25–30.
  • 17. Choudhury S., Bhowal A. Comparative analysis of machine learning algorithms along with classifiers for network intrusion detection. 2015 International Conference on Smart Technologies and Management for Computing, Communication, Controls, Energy and Materials, ICSTM 2015 – Proceedings 2015; May: 89–95.
  • 18. Otoom M.M. ABMJ: An Ensemble Model for Risk Prediction in Software Requirements. IJCSNS. 2022; 22(3): 710.
  • 19. Otoom M.M. Comparing the Performance of 17 Machine Learning Models in Predicting Human Population Growth of Countries. International Journal of Computer Science & Network Security. 2021; 21(1): 220–5.
  • 20. AL-Dreabi E.A., Otoom M.M., Salah B., Hawamdeh Z.M., Alshraideh M. Automated Detection of Breast Cancer Using Artificial Neural Networks and Fuzzy Logic. IJSBAR. 2017; 35: 109–20.
  • 21. Otoom M.M., Jemmali M., Qawqzeh Y., SA K.N., Al Fay F. Comparative Analysis of Different Machine Learning Models for Estimating the Population Growth Rate in Data-Limited Area. IJCSNS. 2019; 19(12): 96.
  • 22. Naseem R., Khan B., Ahmad A., Almogren A., Jabeen S., Hayat B., et al. Investigating Tree Family Machine Learning Techniques for a Predictive System to Unveil Software Defects. Complexity. 2020; 2020: 1–21.
  • 23. Khan B., Naseem R., Shah M.A., Wakil K., Khan A., Uddin M.I., et al. Software Defect Prediction for Healthcare Big Data: An Empirical Evaluation of Machine Learning Techniques. Journal of Healthcare Engineering. 2021; 2021.
  • 24. Khan B., Naseem R., Muhammad F., Abbas G., Kim S. An empirical evaluation of machine learning techniques for chronic kidney disease prophecy. IEEE Access. 2020; 8: 55012–22.
  • 25. Niranjan A., Prakash A., Veena N., Geetha M., Shenoy P.D., Venugopal K.R. EBJRV: an ensemble of Bagging, J48 and random committee by voting for efficient classification of intrusions. In: 2017 IEEE International WIE Conference on Electrical and Computer Engineering (WIECON-ECE). IEEE; 2017; 51–4.
  • 26. Bansal D., Chhikara R., Khanna K., Gupta P. Comparative Analysis of Various Machine Learning Algorithms for Detecting Dementia. Procedia Computer Science [Internet]. 2018; 132: 1497–502. https://doi.org/10.1016/j.procs.2018.05.102
  • 27. Zamir A., Khan H.U., Iqbal T., Yousaf N., Aslam F., Anjum A., et al. Phishing web site detection using diverse machine learning algorithms. Electronic Library. 2020; 38(1): 65–80.
  • 28. Iqbal A., Aftab S., Ali U., Nawaz Z., Sana L., Ahmad M., et al. Performance analysis of machine learning techniques on software defect prediction using NASA datasets. International Journal of Advanced Computer Science and Applications. 2019; 10(5): 300–8.
  • 29. Babagoli M., Aghababa M.P., Solouk V. Heuristic nonlinear regression strategy for detecting phishing websites. Soft Computing [Internet]. 2019; 23(12): 4315–27. https://doi.org/10.1007/s00500–018–3084–2.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-da033047-bf8b-4b0e-a5be-e99e08cf044d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.