PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Study and analysis of discrete event-driven autonomous system with a case study for a robotics task

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Badanie i analiza dyskretnego systemu autonomicznego sterowanego zdarzeniami ze studium przypadku zadania robotyki
Języki publikacji
EN
Abstrakty
EN
Highly probabilistic, potential, and dynamic domains are only relatively known to contribute classical techniques for complex system establishment impossible. Currently available technologies and strategies do not adequately address these novel needs. Thus, by enabling autonomous systems to adapt, decision-making and learning abilities, we can empower them with sufficient and appropriate expertise to recognize and address such issues. To address these requirements, discrete event-driven systems (DEDS) have been developed. This system can help the technologists of future autonomous systems by simulating the effect of auxiliary designs on the performance of the autonomous system. For modeling regular feedback of performance that is influenced by traditional techniques and depends on trust, the discrete event-driven method is most suited. This paper describes the DEDS system, the modeling of this system, and as well as the supervisory control system by explaining the supervisor, and partial supervisor. A comprehensive literature survey has been carried out in this article to explain the controllability, diagnosability, and observability potential of the DEDS system for various applications. Some of the major areas of applications such as healthcare, logistics, robotics, and banking sectors, have been discussed. Also, we have explained this system with the help of modeling a discrete event system for a queuing problem associated with robotics tasks as an example by the simulation with MATLAB 2022a. Lastly, the possible future research directions in the DEDS advancement have been provided.
PL
Wysoce probabilistyczne, potencjalne i dynamiczne domeny są znane z tego, że niemożliwe jest wniesienie klasycznych technik do tworzenia złożonych systemów. Obecnie dostępne technologie i strategie nie zaspokajają odpowiednio tych nowych potrzeb. Zatem, umożliwiając autonomicznym systemom adaptację, podejmowanie decyzji i zdolność uczenia się, możemy wyposażyć je w wystarczającą i odpowiednią wiedzę fachową, aby rozpoznawać i rozwiązywać takie problemy. Aby spełnić te wymagania, opracowano dyskretne systemy sterowane zdarzeniami (DEDS). System ten może pomóc technologom przyszłych systemów autonomicznych, symulując wpływ podsystemów pomocniczych na wydajność systemu autonomicznego. Do modelowania regularnych informacji zwrotnych na temat wyników, na które wpływają tradycyjne techniki i które zależą od zaufania, najbardziej odpowiednia jest metoda dyskretnych zdarzeń. W artykule opisano system DEDS, modelowanie tego systemu, a także system kontroli nadzorczej poprzez opisanie nadzorcy i kierownika częściowego. W tym artykule przeprowadzono obszerny przegląd literatury w celu wyjaśnienia sterowalności, diagnozowalności i potencjału obserwowalności systemu DEDS w różnych zastosowaniach. Omówiono niektóre z głównych obszarów zastosowań, takich jak sektor opieki zdrowotnej, logistyki, robotyki i bankowości. Wyjaśniliśmy również ten system za pomocą modelowania systemu zdarzeń dyskretnych dla problemu kolejkowania związanego z zadaniami robotyki na przykładzie symulacji z MATLAB 2022a. Na koniec przedstawiono możliwe przyszłe kierunki badań w zakresie rozwoju DEDS.
Rocznik
Strony
50--56
Opis fizyczny
Bibliogr. 35poz., rys.
Twórcy
autor
  • Faculty of Computer Science, Electronics, and Telecommunications, AGH University of Science and Technology, Aleja Adama Mickiewicza 30, 30-059 Kraków, Poland
autor
  • Faculty of Computer Science, Electronics, and Telecommunications, AGH University of Science and Technology, Aleja Adama Mickiewicza 30, 30-059 Kraków, Poland
Bibliografia
  • [1] D. P. Watson, and D. Scheidt, “Autonomous systems”, Johns Hopkins APL Technical Digest (Applied Physics Laboratory), vol 26, issue 4, pp. 368-376, Jan. 2005.
  • [2] R. Raj, A. Kos, “Artificial Intelligence: Evolution, Developments, Applications, and Future Scope”, Przegląd Elektrotechniczny, vol. 2023, no. 2, Feb. 2023. doi:10.15199/48.2023.02.01.
  • [3] R. Raj, A. Kos, “A Comprehensive Study of Mobile Robot: History, Developments, Applications, and Future Research Perspectives”, Applied Sciences, vol. 12, no. 6951, July 2022. https://doi.org/10.3390/app12146951
  • [4] M. L. Cummings, and A. S. Clare, “Holistic modelling for human-autonomous system interaction”, Theoretical Issues in Ergonomics Science”, vol. 16, issue 3, March 2015, doi: 10.1080/1463922X.2014.1003990.
  • [5] S. Lafortune, “Discrete Event Systems: Modeling, Observation, and Control”, Annual Review of Control, Robotics, and Autonomous Systems, vol. 2, pp. 141-159, 2019. doi: 10.11146/annurev-control-053018-023659.
  • [6] C. G. Cassandras, and S. Lafortune, “Introduction to Discrete Event Systems”, Springer New York, NY, Ed. 2, 2007. https://doi.org/10.1007/978-0-387-68612-7
  • [7] D. Huang, X. Hong, and M. Gerla, "Situation-aware trust architecture for vehicular networks," in IEEE Communications Magazine, vol. 48, no. 11, pp. 128-135, November 2010, doi: 10.1109/MCOM.2010.5621979.
  • [8] Wenbin Qiu and R. Kumar, "Decentralized failure diagnosis of discrete event systems," in IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans, vol. 36, no. 2, pp. 384-395, March 2006, doi: 10.1109/TSMCA.2005.853503.
  • [9] A. Ramirez-Trevino, E. Ruiz-Beltran, I. Rivera-Rangel, and E. Lopez-Mellado, "Online Fault Diagnosis of Discrete Event Systems. A Petri Net-Based Approach," in IEEE Transactions on Automation Science and Engineering, vol. 4, no. 1, pp. 31- 39, Jan. 2007, doi: 10.1109/TASE.2006.872120.
  • [10] Tae-Sic Yoo and S. Lafortune, "Polynomial-time verification of diagnosability of partially observed discrete-event systems," in IEEE Transactions on Automatic Control, vol. 47, no. 9, pp. 1491-1495, Sept. 2002, doi: 10.1109/TAC.2002.802763.
  • [11] S. Hashtrudi Zad, R. H. Kwong, and W. M. Wonham, "Fault diagnosis in discrete-event systems: framework and model reduction," in IEEE Transactions on Automatic Control, vol. 48, no. 7, pp. 1199-1212, July 2003, doi: 10.1109/TAC.2003.814099.
  • [12] Shengbing Jiang and R. Kumar, "Failure diagnosis of discrete-event systems with linear-time temporal logic specifications," in IEEE Transactions on Automatic Control, vol. 49, no. 6, pp. 934-945, June 2004, doi: 10.1109/TAC.2004.829616.
  • [13] D. Thorsley and D. Teneketzis, "Diagnosability of stochastic discrete-event systems," in IEEE Transactions on Automatic Control, vol. 50, no. 4, pp. 476-492, April 2005, doi: 10.1109/TAC.2005.844722.
  • [14] F. Basile, P. Chiacchio and G. De Tommasi, "An Efficient Approach for Online Diagnosis of Discrete Event Systems," in IEEE Transactions on Automatic Control, vol. 54, no. 4, pp. 748-759, April 2009, doi: 10.1109/TAC.2009.2014932.
  • [15] M. V. Moreira, T. C. Jesus, and J. C. Basilio, "Polynomial Time Verification of Decentralized Diagnosability of Discrete Event Systems," in IEEE Transactions on Automatic Control, vol. 56, no. 7, pp. 1679-1684, July 2011, doi: 10.1109/TAC.2011.2124950.
  • [16] Z. Chen, F. Lin, C. Wang, Y. Le Wang, and M. Xu, "Active Diagnosability of Discrete Event Systems and its Application to Battery Fault Diagnosis," in IEEE Transactions on Control Systems Technology, vol. 22, no. 5, pp. 1892-1898, Sept. 2014, doi: 10.1109/TCST.2013.2291069.
  • [17] V. Chandra and R. Kumar, "A discrete event systems modeling formalism based on event occurrence rules and precedences," in IEEE Transactions on Robotics and Automation, vol. 17, no. 6, pp. 785-794, Dec. 2001, doi: 10.1109/70.975991.
  • [18] L. Feng and W. M. Wonham, "Supervisory Control Architecture for Discrete-Event Systems," in IEEE Transactions on Automatic Control, vol. 53, no. 6, pp. 1449- 1461, July 2008, doi: 10.1109/TAC.2008.927679.
  • [19] K. Cai and W. M. Wonham, "Supervisor Localization: A Top-Down Approach to Distributed Control of Discrete-Event Systems," in IEEE Transactions on Automatic Control, vol. 55, no. 3, pp. 605-618, March 2010, doi: 10.1109/TAC.2009.2039237.
  • [20] K. W. Schmidt and Y. S. Boutalis, "Fuzzy Discrete Event Systems for Multiobjective Control: Framework and Application to Mobile Robot Navigation," in IEEE Transactions on Fuzzy Systems, vol. 20, no. 5, pp. 910-922, Oct. 2012, doi: 10.1109/TFUZZ.2012.2189219.
  • [21] Y. Chen, Z. Li, K. Barkaoui, N. Wu and M. Zhou, "Compact Supervisory Control of Discrete Event Systems by Petri Nets with Data Inhibitor Arcs," in IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 47, no. 2, pp. 364-379, Feb. 2017, doi: 10.1109/TSMC.2016.2521833.
  • [22] A. Raman and R. S. Sreenivas, "Fault-Tolerant Control of Discrete-Event Systems with Controllability Failures," in IEEE Control Systems Letters, vol. 4, no. 3, pp. 674-679, July 2020, doi: 10.1109/LCSYS.2020.2991192.
  • [23] U. Wikborg and T. Lee, "Noncyclic Scheduling for Timed Discrete-Event Systems with Application to Single-Armed Cluster Tools Using Pareto-Optimal Optimization," in IEEE Transactions on Automation Science and Engineering, vol. 10, no. 3, pp. 699-710, July 2013, doi: 10.1109/TASE.2012.2217128.
  • [24] K. Cai, R. Zhang, and W. M. Wonham, "Relative Observability of Discrete-Event Systems and Its Supremal Sublanguages," in IEEE Transactions on Automatic Control, vol. 60, no. 3, pp. 659-670, March 2015, doi: 10.1109/TAC.2014.2341891.
  • [25] X. Yin and S. Lafortune, "A Uniform Approach for Synthesizing Property-Enforcing Supervisors for Partially-Observed Discrete-Event Systems," in IEEE Transactions on Automatic Control, vol. 61, no. 8, pp. 2140-2154, Aug. 2016, doi: 10.1109/TAC.2015.2484359.
  • [26] S. Tripakis and K. Rudie, "Decentralized Observation of Discrete-Event Systems: At Least One Can Tell," in IEEE Control Systems Letters, vol. 6, pp. 1652-1657, 2022, doi: 10.1109/LCSYS.2021.3130887.
  • [27] P. Xu, S. Shu, and F. Lin, "Verification of Delay Co-Observability for Discrete Event Systems," in IEEE Transactions on Control of Network Systems, vol. 7, no. 1, pp. 176-186, March 2020, doi: 10.1109/TCNS.2019.2913562.
  • [28] M. Bozena, “Review of modelling approaches for healthcare simulation”, Operations Research and Decisions, vol. 26, no. 1, 2016, pp. 55-72, doi: 10.5277/ord160104.
  • [29] S. C. Brailsford, P. R. Harper, B. Patel, and M. Pitt, “An analysis of the academic literature on simulation and modelling in health care”, Journal of simulation, vol. 3, issue 3, 2009, pp. 130-140, doi: 10.1057/jos.2009.10.
  • [30] A. A. Tako, and S. Robinson, “The application of discrete event simulation and system dynamics in the logistics and supply chain context”, Decision Support Systems, vol. 52, 2012, pp. 802-815, doi: 10.1016/j.dss.2011.11.015.
  • [31] T. M. Sobh, “Discrete Event Hybrid Systems in Robotics And Automation”, Nova Science Pub. Inc, UK ed. Edition, July 18, 2005, ISBN: 978-1594544637, Available online: https://www.amazon.comi/discrete-Hybrid-Systems-Robotics-Automation/dp/1594544638 [accessed on May 15, 2022].
  • [32] M. Carvalho, and L. Luna, “Discrete and Continuous Simulation”, PAD 824-Advanced Topics in System Dynamics, 2002, Available online: https://www.slideshare.net/chienql/discrete-and-continuous-simulation-presentation [accessed on June 8, 2022].
  • [33] P. Lima, H. Gracio, V. Veiga and A. Karlsson, "Petri nets for modeling and coordination of robotic tasks," SMC'98 Conference Proceedings. 1998 IEEE International Conference on Systems, Man, and Cybernetics (Cat. No.98CH36218), 1998, pp. 190-195 vol.1, doi: 10.1109/ICSMC.1998.725407.
  • [34] “Discrete Event Systems Based Robotic Task Modeling”, Intelligent Robots and Systems, Available online: https://irsgroup.isr.tecnico.ulisboa.pt/irsg_research/discrete-event-systems-based-robotic-task-modeling/ [accessed on May 16, 2022].
  • [35] “Discrete Event Systems for Automation”, IEEE Robotics and Automation Society, Available online: https://www.ieee-ras.org/publications/t-ase/special-issues-t-ase/discrete-event-systems-for-automation [accessed on May 16, 2022].
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-da019c87-7853-435d-bff9-9174cb4202c1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.