PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experimental Determination of the Relationship between Soil Structure Parameters and Indicators of Water Saturation and Filtration

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Modern climatic changes, in particular, changes in the amount and intensity of soil moisture (precipitation regime), have a significant impact on the water-physical properties of mineral soils. The state of soil’s solid phase and the mutual arrangement of its structural particles can be considered as the most significant factor for soil properties. Due to the structure of the soil, it is possible to influence the uniformity of the distribution of water in the soil sample not only in the vertical direction, but, partially, also in the horizontal direction, which will allow to resolve the issue of local flooding of individual areas and the bearing capacity of mineral soils. For the analysis of changes in the water-physical properties of the soil environment, the soil was considered as a homogeneous in density and continuous environment formed by a set of separate structural aggregates connected by cohesive forces. Based on the experimental results of the physical modelling, it was determined that the presence of structural soil macroaggregates with a size of 4 to 6 mm is the most appropriate for slowing down the vertical filtration of water saturating the lower soil layers, and the formation of structural soil macroaggregates of size larger than 6 to 10 mm for the predominant types of soils is necessary to increase the vertical filtration. Due to the size of the formed macroaggregates, it is possible to predict a change in the water-physical parameters of the soil, which then can be used for the assessment of the calculated characteristics of the soil environment.
Słowa kluczowe
Rocznik
Strony
89--100
Opis fizyczny
Bibliogr. 23 poz., rys., tab., wykr.
Twórcy
  • National University of Water and Environmental Engineering, Department of Building, Road and Reclamation Machinery, 11 Soborna Str., Rivne, 33028, Ukraine
Bibliografia
  • Auler A. C. et al (2014) Soil physical and hydraulic properties resulting from the management in integrated production systems, Rev. Ciˆenc. Agron., 45 (5) (Especial), 976–989.
  • Babkov V. F., Bezruk V. M. (1986) Fundamentals of soil science and soil mechanics (in Russian), M.: Higher. school, 239 p.
  • Bertolino A. VFA, Fernandes N. F., Miranda J. PL, Souza A. P. et al (2010) Effects of plow pan development on surface hydrology and on soil physical properties in Southeastern Brazilian plateau, Journal of Hydrology, 393, 94–104, https://doi:10.1016/j.jhydrol.2010.07.038.
  • Blunt M. J., Bijelijic V., Dong H., Gharbi O., Iglauer S. et al (2013) Pore-scale imaging and modeling, Advances in Water Resources, 51, 197–216.
  • Corwin E. I., Clusel M., Siemens O. N. et al (2010) Model for ransom packing of polydisperse frictionless, Soft Matter., 6, 2945–2959.
  • Haddad A. (2022) Extreme Rainfall-Runoff Events Modeling Using HEC-HMS Model for Oued El
  • Hachem Watershed, Northern Algeria, Archives of Hydro-Engineering and Environmental Mechanics, 69 (1), 45–57, https://doi.org/10.2478/heem-2022-0004.
  • Haghnazari F., Shahgholi H., Feizi M. (2015) Factors affecting the infiltration of agricultural soils: review, International Journal of Agronomy and Agricultural Research (IJAAR), 6 (5), 21–35, ISSN: 2223-7054 (Print) 2225–3610 (Online).
  • Indoria A. K., Sharma K. L., Reddy K. S. (2020) Hydraulic properties of soil under warming climate, Climate Change and Soil Interactions, Chapter 18, 473–508, https://doi.org/10.1016/B978-0-12-818032-7.00018-7.
  • Lukyanchuk O. P. (2019) Modeling of the structure of loosened soil after the action of the curvilinear working element of the tiered deep loosener, Bulletin of the NUVHP. Technical sciences. Collection of scientific papers, Rivne: NUVHP, Issue 2(86), 225–238, https://doi.org/10.31713/vt2201919.
  • Mazhayskiy Y., Rokochynskiy A., Lukianchuk O. et al (2021) Research of energy capacity of structural comminution in deep loosing of sandy and loamy soil, Engineering for Rural Development, 20, 57–62.
  • McHugh O. V., Steenhuis T. S., Abebe B., Fernandes E. C. M. (2007) Performance of in situ rainwater conservation tillage techniques on dry spell mitigation and erosion control in the drought-prone North Wello zone of the Ethiopian highlands, Soil & Tillage Research, 97, 19–36. https://doi:10.1016/j.still.2007.08.002.
  • Michurin B. N. (1975) Energy of soil moisture, L.: Gidrometeoizdat, 140.
  • Miriti J. M., Kironchi G., Esilaba A. O., Gachene C. K. K., Heng L. K.,Mwangi D. M. (2013) The effects of tillage systems on soil physical properties and water conservation in a sandy loam soil in Eastern Kenya, Journal of Soil Science and Environmental Management, 4 (7), 146–154, November, 2013, https://doi:10.5897/JSSEM2013.0395.
  • Munkholm L. J. (2002) Soil Fragmentation and Friability. Effects of Soil Water and Soil Management, PhD thesis, Danish Institute of Agricultural Sciences, Department of Crop Physiology and Soil Science. Danish Institute of Agricultural Sciences, 50 p.
  • Odey S. O., Manuwa S. I., Ademosun O. C. (2014) Effect of Tractor Traffic and Moisture Content on Cone Index in a Crop-cultivated Land, Proceedings of the International Soil Tillage Research Organization (ISTRO) Nigeria Symposium, Akure 2014, November 3–6, Akure, Nigeria, 134–142.
  • Panchenko A. N. (1999) The theory of soil grinding by tillage tools (in Russian),. Dnepropetrovsk: DGAU. 140 p.100
  • O. Lukyanchuk Panov I. M., Vetokhin V. I. (2008) Physical foundations of soil mechanics (in Russian), Monograph. K.: Phoenix, 266 p.: ISBN 978-966-651-621-6.
  • Revut I. B. (1964) Soil physics (in Russian), L., Kolos, 320 p.
  • Rokochinskiy A., Volk P., Koptyuk R., Prykhodko N. (2020) Formation of water demand of drained lands in relation to changing climatic and agromelioration conditions. (Formation of water dem and of drained lands in relation to changing climatic and agromelioration conditions), Reclamation and Water Management, 1, 76–85, https://doi.org/10.31073/mivg202001-231.
  • Romm E. S. (1985) Structural models of porous space of rocks, M.: Nedra, 241. Soil water penetration. Chisel-deep loosener CHG-40 (2018) Protocol No. 01-18-2018 (01-18-2018) of July 24, 2018. Functional tests (focus test) of the Center for the Development of UkrNDIPVT named after L. Pogorily. Research, http://www.ndipvt.com.ua/focus tests/Chizel ChG-40 waterpen.pdf, http://www.ndipvt.com.ua/focus.tests/ChizelChG-40-02 waterpen.pdf.
  • Unger P. W, Kirkham M. B., Nielsen D. C. (2010) Water Conservation for Agriculture, [In:] Soil and Water Conservation Advances in the United States, Chapter 1, 1–45, Soil Science Society of America. February 2010, https://doi:10.2136/sssaspecpub60.c1.
  • Zaika P. M. (2001) Theory of Agricultural Machinery (in Russian), Vol. 1 (part 1): Machines and to ols for soil cultivation, Kharkiv, Oko. 444 p.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d9f712b9-dae3-4c03-a3a7-ec321316aeef
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.