PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Shear force distribution law of inclined webs box girder under live load

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Inclined web box girders are widely used in urban areas because of their attractive appearance. However, there are few studies on the vehicle shear force distribution of this type of bridge. In this study, we established 62 three-dimensional finite element models in which the shear force of each web of the box girder can be extracted; furthermore, we investigated the shear force distribution law in webs of the box girder under live loads, including single-chamber and multichamber inclined web box girders. The main parameters studied include the number of vehicle lanes and chambers, slope of the inclined webs, and support conditions. The results reveal that an uneven distribution of web shear force exists in both the single-chamber box girder and multichamber girder under live loads, and the maximum value of the vehicle shear force distribution factor is greater than the average shear value shared by all webs. Therefore, the uneven distribution of shear force in the webs of the box girder cannot be ignored under eccentric vehicle loads. These values greatly exceed the safety factor of 1.15 that is used in conventional calculations.
Rocznik
Strony
593--610
Opis fizyczny
Bibliogr. 34 poz., il., tab.
Twórcy
autor
  • School of Traffic Engineering, Shenyang Jianzhu University, Shenyang, Liaoning, China
autor
  • School of Traffic Engineering, Shenyang Jianzhu University, Shenyang, Liaoning, China
autor
  • School of Traffic Engineering, Shenyang Jianzhu University, Shenyang, Liaoning, China
autor
  • School of Traffic Engineering, Shenyang Jianzhu University, Shenyang, Liaoning, China
autor
  • School of Traffic Engineering, Shenyang Jianzhu University, Shenyang, Liaoning, China
Bibliografia
  • [1] J. Zhang, C. Jia, C. Zhou, “Accumulative Bayesian detection of displacement constants of a hybrid indeterminate box girder with variable scale gradient theory”, Advances in Mechanical Engineering, 2019, vol. 11, no. 2, DOI: 10.1177/1687814018824164.
  • [2] L. Jiang, Z. Lai, W. Zhou, “Improved finite beam element method for analyzing the flexural natural vibration of thin-walled box girders”, Advances in Mechanical Engineering, 2017, vol. 9, no. 8, DOI: 10.1177/ 1687814017726292.
  • [3] S.C. Chaudhari, S.K. Deshmukh, “Distortional analysis of laminated composite box girder: A review”, Materials Today: Proceedings, 2020, vol. 27, pp. 1479-1486, DOI: 10.1016/j.matpr.2020.02.974.
  • [4] Y. Zhu, S. Wan, K. Shen, Q. Su, M. Huang, “Experimental and numerical study on the nonlinear performance of single-box multi-cell composite box-girder with corrugated steel webs under pure torsion”, Journal of Constructional Steel Research, 2020, vol. 168, DOI: 10.1016/j.jcsr.2020.106005.
  • [5] G.H. Ahmed, O.Q. Aziz, “Stresses, deformations and damages of various joints in precast concrete segmental box girder bridges subjected to direct shear loading”, Engineering Structures, 2020, vol. 206, DOI: 10.1016/j.engstruct.2019.110151.
  • [6] A.G. Soto, A.P. Caldentey, H.C. Peiretti and J.C. Benítez, “Experimental behaviour of steel-concrete composite box girders subject bending, shear and torsion”, Engineering Structures, 2020, vol. 206, DOI: 10.1016/j.engstruct.2020.110169.
  • [7] Q. Vu, D. Thai, S. Kim, “Effect of intermediate diaphragms on the load - carrying capacity of steel - concrete composite box girder bridges”, Thin-Walled Structures, 2018, vol. 122, pp. 230-241, DOI: 10.1016/j.tws.2017.10.024.
  • [8] D. Moon, J. Sim, H. Oh, “Practical crack control during the construction of precast segmental box girder bridges”, Computers & Structures, 2005, vol. 83, no. 31-32, pp. 2584-2593, DOI: 10.1016/j.compstruc.2005.05.001.
  • [9] Y. Lu, G. An, “Impact of shear connectors on the behaviours of box-girders with corrugated webs”, Proceedings of the Institution of Civil Engineers - Structures and Buildings, 2018, vol. 171, no. 10, pp. 755-767, DOI: 10.1680/jstbu.16.00152.
  • [10] H.C. Gomez, P.J. Fanning, M.Q. Feng, S. Lee, “Testing and long-term monitoring of a curved concrete box girder bridge”, Engineering Structures, 2011, vol. 33, no. 10, pp. 2861-2869, DOI: 10.1016/j.engstruct.2011.05.026.
  • [11] L. Kun, X. Lei, S. Zeng, “Influence analysis on the effect of rail fastening parameters on the vibration response of track-bridge system”, Advances in Mechanical Engineering, 2017, vol. 9, no. 8, DOI: 10.1177/1687814017702839.
  • [12] A. Zaid, D. Collings, “Transverse assessment of a concrete box girder bridge”, Proceedings of the Institution of Civil Engineers - Bridge Engineering, 2017, vol. 170, no. 1, pp. 14-27, DOI: 10.1680/jbren.15.00018.
  • [13] H.K. Ryu, C.S. Shim, S.P. Chang, “Testing a composite box-girder bridge with precast decks”, Proceedings of the Institution of Civil Engineers - Structures and Buildings, 2004, vol. 157, no. 4, pp. 243-250, DOI: 10.1680/stbu.2004.157.4.243.
  • [14] Q.Z. Luo, Q.S. Li, D.K. Liu, L.F. Yang, “A modified finite segment method for thin-walled single-cell box girders with shear lag”, Proceedings of the Institution of Civil Engineers - Structures and Buildings, 2001, vol. 146, no. 1, pp. 41-46, DOI: 10.1680/stbu.146.1.41.40554.
  • [15] W. Da, W. Lei, L. Yongming, T. Benkun, L. Yang, “Failure mechanism investigation of bottom plate in concrete box girder bridges”, Engineering Failure Analysis, 2020, vol. 116, DOI: 10.1016/j.engfailanal.2020.104711.
  • [16] A.G. Soto, A.P. Caldentey, H.C. Peiretti, J.C. Benítez, “Experimental behaviour of steel-concrete composite box girders subject bending, shear and torsion”, Engineering Structures, 2020, vol. 206, DOI: 10.1016/j.engstruct.2020.110169.
  • [17] W. Yan, B. Han, H. Xie, P. Li, L. Zhu, “Research on numerical model for flexural behaviors analysis of precast concrete segmental box girders”, Engineering Structures, 2020, vol. 219, DOI: 10.1016/j.engstruct.2020.110733.
  • [18] X. Xue, M. Wu, Z. Li, P. Zhou, “Numerical Analysis of Dead Load Shear Force Distribution in Webs of Multicell Inclined Web Box-Girder Bridge”, Advances in Civil Engineering, 2020, vol. 2020, pp. 1-10, DOI: 10.1155/2020/9670704.
  • [19] X. Xue, C. Zang, J. Zhou, H. Zhang, “Numerical Investigation of Distribution Laws of Shear Force in Box Girder Webs”, Advances in Materials Science and Engineering, 2019, vol. 2019, pp. 1-14, DOI: 10.1155/2019/9865989.
  • [20] X.S. Huo, E.P. Wasserman, R.A. Iqbal, “Simplified Method for Calculating Lateral Distribution Factors for Live Load Shear”, Journal of Bridge Engineering, 2005, vol. 10, no. 5, DOI: 10.1061/(asce)1084-0702(2005)10:5(544).
  • [21] F. Fanous, J. May, T. Wipf, “Development of Live-Load Distribution Factors for Glued-Laminated Timber Girder Bridges”, Journal of Bridge Engineering, 2011, vol. 16, no. 2, DOI: 10.1061/(asce)be.1943-5592.0000127.
  • [22] D.K. Harris, A. Gheitasi, “Implementation of an energy-based stiffened plate formulation for lateral load distribution characteristics of girder-type bridges”, Engineering Structures, 2013, vol. 54, pp. 168-179, DOI: 10.1016/j.engstruct.2013.04.002.
  • [23] H.U. Bae, M.G. Oliva, “Moment and Shear Load Distribution Factors for Multigirder Bridges Subjected to Overloads”, Journal of Bridge Engineering, 2012, vol. 17, no. 3, DOI: 10.1061/(asce)be.1943-5592.0000271.
  • [24] D. Yaohua, M.P. Brent, L. Ping, “Lateral Live-Load Distribution of Dual-Lane Vehicles with Nonstandard Axle Configurations”, Journal of Bridge Engineering, 2017, vol. 22, no. 4, DOI: 10.1061/(asce)be.1943-5592.0001014.
  • [25] H. Dwairi, O. Al-Hattamleh, H. Al-Qablan, “Evaluation of live-load distribution factors for high-performance prestressed concrete girder bridges”, Bridge Structures, 2019, vol. 15, no. 1-2, pp. 15-26, DOI: 10.3233/brs-190149.
  • [26] O. Mishra, S.P. Singh, “An overview of microstructural and material properties of ultra-high-performance concrete”, Journal of Sustainable Cement Based Materials, 2019, vol. 8, no. 2, pp. 97-143, DOI: 10.1080/21650373.2018.1564398.
  • [27] S.T. Song, Y.H. Chai, S.E. Hida, “Live-Load Distribution Factors for Concrete Box-Girder Bridges”, Journal of Bridge Engineering, 2003, vol. 8, no. 5, DOI: 10.1061/(asce)1084-0702(2003)8:5(273).
  • [28] M. Singh, A.H. Sheikh, M.S. Mohamed Ali, P. Visintin, M.C. Griffith, “Experimental and numerical study of the flexural behaviour of ultra-high performance fibre reinforced concrete beams”, Construction and Building Materials, 2017, vol. 138, pp. 12-25, DOI: 10.1016/j.conbuildmat.2017.02.002.
  • [29] M. Samaan, K. Sennah, J.B. Kennedy, “Distribution Factors for Curved Continuous Composite Box-Girder Bridges”, Journal of Bridge Engineering, 2005, vol. 10, no. 6, DOI: 10.1061/(asce)1084-0702(2005)10:6(678).
  • [30] I. Mohseni, A.R. Khalim Rashid, “Development of the applicability of simplified Henry’s method for skewed multicell box-girder bridges under traffic loading conditions”, Journal of Zhejiang University-Science (Applied Physics & Engineering), 2012, vol. 13, no. 12, pp. 915-925, DOI: 10.1631/jzus.a1200098.
  • [31] S.J. Fatemi, M.S. Mohamed Ali, A.H. Sheikh, “Load distribution for composite steel-concrete horizontally curved box girder bridge”, Journal of Constructional Steel Research, 2016, vol. 116, pp. 19-28, DOI: 10.1016/j.jcsr.2015.08.042.
  • [32] W. Choi, I. Mohseni, J. Park, J. Kang, “Development of Live Load Distribution Factor Equation for Concrete Multicell Box-Girder Bridges under Vehicle Loading”, International Journal of Concrete Structures and Materials, 2019, vol. 13, no. 3, pp. 385-398, DOI: 10.1186/s40069-019-0336-1.
  • [33] S. Kong, L. Zhuang, M. Tao, J. Fan, “Load distribution factor for moment of composite bridges with multi-box girders”, Engineering Structures, 2020, vol. 215, DOI: 10.1016/j.engstruct.2020.110716.
  • [34] JTJ 021-89 General Code for Design of Highway Bridges and Culverts. Ministry of Transport of the People’s Republic of China, Beijing, 1989.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d9f3fc31-de56-4182-a35a-1dbeb4b5592c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.