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PREDICTING THE PROPERTIES OF CORRUGATED BASE 
PAPERS USING MULTIPLE LINEAR REGRESSION
AND ARTIFICIAL NEURAL NETWORKS

The  difficulty  in  predicting  the  properties  and  behaviour  of  paper  products
produced using heterogeneous raw materials with high percentages of recovered
fibres  poses  restrictions  on  their  efficient  and  effective  use  as  corrugated
packaging materials.  This work presents  predictive models  for the mechanical
properties of corrugated base papers  (liner and fluting-medium) from fibre and
physical  property  data  using  multiple  linear  regression  and  artificial  neural
networks.  The most  significant  results  were  obtained for the  prediction  of the
tensile strength of liners in the cross direction from the origin  (wood type, pulp
method) of  the  fibres  using  linear  regression,  and  the  prediction  of  the
compressive strength of fluting-medium in the longitudinal (machine) direction,
according to the short-span test, using a neural network with one hidden layer
with  6  neurons,  with  coefficients  of  determination  at  95.14%  and  99.28%,
respectively.

Keywords: recovered  fibres,  linerboard,  corrugating  medium,  fibre
characteristics, paper properties, multiple linear regression, artificial
neural networks 

Introduction 

Corrugated board is currently the most popular material for transporting goods,
such  as  fresh  fruit  and  vegetables,  household  appliances  and  industrial
equipment, as about 60% packaging for the transport of goods is made of it. Due
to  favourable  legislation  [European  Commission  1994,  2004,  2005]  and
environmental  restrictions  placed  on  the  use  of  forest-based  materials,
corrugated base papers [liner and fluting-medium] contain 80 to 100% recovered
fibres [Adamopoulos and Oliver 2006; FEFCO 2012]. The pulp produced from
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recycled paper originates from a mixture of different paper types and varies in
content from source to source or even from the same source over time [Virtanen
and Nilsson  2013].  Due  to  the  mechanical  action  of  repulping  and repeated
rewetting and drying cycles, recovered fibres tend to be broken or damaged and
have different physical properties (e.g. the hornification effect) to virgin fibres
[Ellis and Sedlachek 1993; Brancato 2008]. 

Numerous  studies  have  been  conducted  on  the  potential  of  papermaking
using recovered fibres, most of which have shown that the strength properties of
fibres and paper are reduced upon recycling [Howard and Bichard 1992; Nazhad
and Paszner 1994; Avijit 1995; Batchelor 1999; Nazhad 2005]. The effects of
drying are  presumed to be the main reason for  the reduction in the  strength
properties  of  the  recovered  fibres.  Drying  influences  fibre  strength,  fibre
swelling and bonding potential, which are the important factors to the strength of
paper  made  from  recovered  fibres  [Ellis  and  Sedlachek  1993;  Ince  2004;
Adamopoulos et al. 2007]. Therefore, the use of additional process technology is
necessary  (mechanical  refining,  coatings,  sizing,  bonding  adhesives,  etc.)  to
compensate for the inherent disadvantages of recovered fibres. However, these
additional processes increase manufacturing costs.

The difficulty in predicting the properties of paper products produced using
heterogeneous sources imposes several limitations, which can therefore lead to
substantial economic loss [Abubakr et al. 1995]. The main limitation related to
the possibility of predicting paper properties based on fibre characteristics is the
lack of universal mathematical descriptions of this relationship. Due to the non-
linear relationship between fibre characteristics and the physical and mechanical
properties  of  paper,  the  development  of  non-linear  models,  such  as  artificial
neural networks [ANNs] [Bishop 1995; El-Sebakhy 2006] has been proposed as
a promising solution, as they provide a fast and elastic response, are tolerant of
damage and have the ability to learn [Ciesielski and Olejnik 2014]. Kim et al.
[1993] applied ANNs to predict the grammage and moisture content of paper
based on machine characteristics, such as the Kappa number in a digester and
the brightness in a bleaching plant. Gianeswhar et al. [2000] developed a model
based on neural networks for the prediction of paper properties, such as tensile
strength, opacity and grammage, from pulp characteristics, such as the pH and
CSF  values.  Additional  research  based  on  ANNs  has  been  undertaken  on
predicting paper properties from fibre characteristics, such as the origin of the
pulp and the fibre length [Scharcanski and Dodson 1997; Olejnik and Ciesielski
2004; Nieminen et al. 2011; Ciesielski and Olejnik 2014]. Another study using
simple  regression  analysis  showed  that  grammage  could  serve  as  a  good
estimator of the strength properties of the most common categories of corrugated
base papers in Europe [Adamopoulos et al. 2014]. 

Corrugated packaging companies are in need of methods and tools to predict
the strength properties of heterogeneous materials (e.g. corrugated base papers)
and to utilize them in an optimal manner. This study deals with this common
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technical problem for the corrugated board industry. The main objective of the
study  was  to  specifically  create  models  to  predict  corrugated  base  paper
properties from data on the fibres [qualitative, quantitative, morphological] used
in their production. To this end, two different methods were used, multiple linear
regression  and ANNs,  for  the  development  of  appropriate  models  that  could
effectively predict the mechanical properties of paper using data on their fibres
(composition  and  morphology)  and  physical  properties  (grammage  and
thickness).

Materials and methods

Paper materials and testing 

The  fibre  composition  and  morphological  characteristics  of  thirty  two  (32)
papers used by the corrugated packaging industry were analysed.  The papers
represented different qualities of liner (8 brown kraftliner and 8 brown testliner)
and fluting-medium (8 semi-chemical fluting and 8 recycled fluting) available in
Greece for the production of corrugated board. The papers were provided by
different  paper  suppliers  from 11  European  countries,  Turkey and  the  USA
(tab. 1).

Table 1. Information on the origin and classification of the papers 

Liner Fluting-medium

Kraftliner [KL] Testliners [TL]
Semi-chemical
fluting [SCF]

Recycled fluting
[RF]

Origin

France, Norway,
Portugal,

Switzerland, UK,
USA

Greece, Portugal,
Romania, Spain,

Turkey

Bulgaria, Croatia,
Finland,

Romania,
Sweden,

Switzerland,
Spain

Greece, Portugal,
Spain, Turkey

Classi-
fication1

Mainly from
primary kraft
pulp [brown
kraftliner]

Mainly from pulp
of recycled

fibres, substance
equal to or over

120 g/m2 [Brown
testliner]

Mainly from pulp
of semi-chemical
primary fibres 

Mainly from pulp
of recycled fibres,
substance equal to
or over 100 g/m2

1According to CEPI Containerboard [2012].

A qualitative and quantitative determination of the fibre components of the
papers as regards the method of processing (chemical, mechanical, rag, semi-
-chemical  and  chemi-mechanical  pulp)  was  carried  out  according  to  the
Herzberg  staining  test  method  [ISO  9184-3:1990].  After  staining  with  the
Herzberg  stain,  the  fibres  were  viewed and systematically counted  under  an
Eclipse 50i light microscope equipped with a digital Sight DS-5M-L1 camera
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(both Nikon). The fibres were classed into softwood, hardwood and non-wood
fibre categories based on their morphology [Ilvessalo-Pfäffli 1995]. The weight
percentages  of  the  different  fibre  categories  were  calculated  by  using
predetermined weight factors recommended by ISO 9184-1:1990.

The papers were tested for the following physical and mechanical properties:
grammage  [ISO  536:2012],  thickness  [ISO  534:2005],  compressive  strength
according to  the  short-span test  SCT [ISO 9895:2008],  tensile  strength [ISO
1924-3:2005] and tearing strength [ISO 1974:2012]. Before testing, the samples
were conditioned at 23oC and 50% RH, according to ISO 187:1990.

Modelling methods

Multiple linear regression [MLR] and feed forward artificial  neural  networks
(ANNs) were used to predict the mechanical properties of the papers. 

Multiple linear regression attempts to model the relationship between two or
more explanatory variables and a response variable by fitting a linear equation to
observed data. Considering x1,  x2, …, xn to be a set of  n independent variables
(estimators)  associated  with  a  value  of  the  dependent  variable  ,  the  linear
regression model for the jth sample unit has the following form: 

y j=β 0+β 1 x j 1+β 2 x j 2+…+β n x jn+ε (1)

Where  is a random error and bi (i = 0, 1, 2, …, n) are the unknown regression
parameters. The MLR parameters are estimated using the least squares model
where the best-fitting line for the observed data is calculated by minimizing the
sum of the squares of the vertical deviations from each data point to the line
(if a point lies on the fitted line exactly, then its vertical deviation is 0). Although
MLR  models  are  simply  based  on  linear  and  additive  associations  of  the
explanatory variables, they have been extensively used with satisfactory results.
In  this  work,  from a  multitude  of  variables,  only the  statistically significant
linear regression equations (ANOVA, p-value ≤ 5%) were reported.

However, due to the non-linear relationship between fibre characteristics and
the physical and mechanical properties of paper, the development of non-linear
models, such as ANNs, emerges as a promising solution. These models perform
a non-linear transformation of input data to approximate output data, learning
from  experimental  data  examples  and  exhibiting  some  ability  to  generalise
beyond the training data. The most common ANN is the multilayer feedforward
one where the nodes are grouped into three types of layers, i.e. input, hidden and
output layers. The nodes are provided with input data in the input layer, which
are then transferred to the subsequent layers. Cybenko [1989] has shown that an
ANN with one hidden layer is enough to approximate any function, if presenting
enough  hidden  nodes.  The  topology of  the  network,  along  with  the  neuron
processing function, determines the accuracy and degree of representation of the
model developed to correctly represent the behaviour of the system. The output
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value of each node is obtained through an activation function,  which can be
a sigmoid, a hyperbolic tangent or an exponential. Each node in the hidden and
output layers has a bias value which is known as the activation threshold. ANNs
are  obtained  by  dividing  data  into  three  categories:  training,  validation  and
testing.  Training  data  is  used  to  determine  the  network  topology  and  the
associated  weights  by  solving  a  non-linear  optimization  problem  with  the
objective  function  being  dictated  by  the  mean  squared  error  [MSE].  The
validation data is used to compute the ANN performance and the testing data is
used to assess the performance of the network.

A disadvantage  of  ANNs  in  comparison  with  MLR  is  the  difficulty  in
explaining  the  relationship  between  independent  and  dependent  variables
because of the use of ambiguously defined weights. In contrast, MLR analysis
can provide quantitative confidence to estimated coefficients [Lou and Nakai
2001]. In this work, the ANNs were trained using StatisticaTM Neural Networks,
Version 12 (Inc 2015). The network configuration for each paper grade, liner and
fluting-medium, was approached empirically by testing various possibilities and
selecting the one that provided the minimum training and validation error, and
the maximum correlation coefficient. The weights were randomly set at the start
of the network training phase according to the chosen algorithm. 70% of the
total sample data from each paper grade was used to train the network, while
15% was for validation and 15% for testing. 

Results and discussion 

The results of the fibre composition and physico-mechanical properties of the
selected corrugated base papers are presented in table 2.  The findings are in
alignment  with  previous  studies  showing  the  great  variation  in  the  fibre
characteristics and properties of papers used in corrugated board manufacturing
as a result  of recycling [Adamopoulos et al.  2007; Adamopoulos et al.  2009;
Adamopoulos et al. 2013].

The most significant MLR models for predicting the mechanical properties
from the fibre characteristics and physical properties for both corrugated base
paper categories [liner and fluting-medium] are presented in table 3. Significant
MLR models were obtained for predicting the tensile and tearing strength of
liners in the cross direction from the origin and characteristics of the fibres, with
the coefficient  of  determination at  95.14% and 94.86%, respectively.  For the
fluting-medium,  equally  significant  results  were  obtained  for  predicting,
according  to  the  short-span  test,  the  compressive  strength  in  the  machine
direction from the origin (type and pulp) and the percentage by weight of the
fibres, with the coefficient of determination at 94.13%. Grammage (weight per
unit area expressed as g/m2) had a weak positive relationship with the tearing
strength  of  the  fluting-medium in the cross-direction,  with the  coefficient  of
determination equal to 66.53%.
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Table  2.  Fibre  composition  and  properties  of  the  papers (mean  value/standard
deviation) 

Liners Fluting-medium
kraftliners

(KL)
testliners

(TL)
semi-chemical
fluting (SCF)

recycled
fluting (RF)

Origin of
fibres1 [wt

%]

softwood 56.31/14.63 33.19/9.89 29.63/12.76 26.19/7.05
hardwood 38.89/13.93 61.69/7.12 66.99/12.18 65.23/7.09

non-wood 4.80/2.02 5.12/4.44 3.38/2.83 8.58/1.81

Whole fibres [wt%] 87/2.8 82/6.2 91/5.9 84/7.0

Chemical pulp fibres
[wt%]

59/6.25 33/20.33 25/11.2 52/3.6

Number of whole
softwood fibres 

167/101.4 56/19.2 52/46.7 45/22.4

Number of fragments
from softwood fibres

55/23.7 71/27.9 37/23.2 58/22.9

Number of softwood
chemical pulp fibres 

171/85.4 55/15.8 36/27.3 72/13.6

Number of hardwood
fibres

349/134.0 438/51.7 510/63.4 437/43.3

Number of non-wood
fibres 

33/13.0 31/20.9 27/25.7 61/14.2

Grammage [g/m2] 149.93/26.23 130.90/26.71 137.26/18.33 111.82/13.5

Thickness (μm) 0.24/0.05 0.21/0.05 0.21/0.04 0.2/0.04

SCT [kN/m]
MD 6.16/1.60 4.51/0.83 6.33/1.98 4.00/0.77
CD 3.44/0.84 2.44/0.61 3.53/0.97 2.18/0.40

Tensile strength
[kN/m]

MD 8.72/0.05 7.17/0.73 8.38/0.69 6.99/0.75
CD 6.23/1.38 2.65/0.80 4.47/0.95 2.46/0.28

Tearing strength
[mN]

MD 151.32/46.62 64.64/15.43 61.51/10.19 68.05/18.60
CD 171.14/67.20 82.77/7.61 89.75/16.15 85.43/9.84

1Based on their morphology.
Note: machine direction [MD], cross direction [CD].

The neural networks selected to predict the compressive strength according
to the short-span test and the tensile strength from the percentage by weight of
the origin of the fibres and the physical properties (grammage and thickness) for
the  liner  and  fluting-medium are  presented  in  figure 1.  The  most  significant
results were obtained for predicting the compressive strength in the machine and
cross directions, according to the short-span test, for the fluting-medium from
a neural  network  with  6  neurons  in  the  hidden  layer  and  the  coefficient  of
determination at  99.28% and 98.86%, respectively.  The information for  each
neural network developed is provided in table 4.
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Table 3. Linear model for prediction of mechanical properties  of corrugated board
from fibre characteristics and physical properties of corrugated board 

y Estimators Regression R2

L
in

er
s

Tensile
strength

CD

x1 = Whole softwood fibres
x2 = Fragment count

x3 = Total softwood chemical
x4 = Hardwood fibres
x5 = Non-wood fibres

y = 1.95 – 2.482x1 – 2542x2 +
+ 2.53x3 + 0.00891x4 – 0.1623x5

95.14%

Tearing
strength

CD

x1 = Whole softwood fibres
x2 = Fragment count

x3 = Total softwood chemical
x4 = Hardwood fibres
x5 = Non-wood fibres

y = 63.7 + 70.6x1 + 69.4x2 +
– 69.4x3 + 0.313x4 – 6.98x5

94.86%

F
lu

ti
ng

-m
ed

iu
m

Tearing
strength

CD
x1 = Grammage y = 24.4 + 0.494x1 66.53%

SCT
MD

x1 = wt% chemical fibres
x2 = wt% whole fibres

x3 = wt% softwood
x4 = wt% hardwood
x5 = wt% non-wood

y = –28003 + 0.217x1 +
– 0.0354x2 + 280x3 + 280x4 +

+ 280x5

94.13%

Note: machine direction [MD], cross direction [CD].

Both  approaches,  MLR  and  ANN,  provided  significant  models  for  the
prediction  of  the  tensile  strength  in  the  cross  direction  of  the  liners,  with
coefficients of determination equal to 95% and 97.27%, and the compressive
strength in the machine direction of the fluting-medium, with the coefficient of
determination  at  94.13%  and  99.28%,  respectively.  While  both  approaches
provided models with a high coefficient  of determination for each dependent
variable, it can be stated that the ANN models outperformed the MLR models
due  to  the  difficulty  in  the  linear  correlation  between  the  input  and  output
variables in the latter.

This study can be seen as a follow up of previous work [Adamopoulos et al.
2014], which showed that the variety of packaging paper grades produced from
heterogeneous recycled pulp in Europe can be characterized by their physical
property data (e.g. grammage), irrespective of the paper category or subcategory
to which they belong. This enables a better classification of the different grades,
thus  allowing the selection of  the  appropriate  raw material  for  each end-use
(packaging application). In the present study, potential paper strength predictions
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Table 4. Summary of training and verification results of proposed neural network 

P
ap

er
 g

ra
de

In
pu

t l
ay

er

O
ut

pu
t l

ay
er

N
um

be
r 

of
 n

eu
ro

ns
 in

 h
id

de
n 

la
ye

r

T
ra

in
in

g 
er

ro
r

T
ra

in
in

g 
pe

rf
or

m
an

ce

Activation
function
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grammage
thickness
wt% softwood
wt% hardwood
wt% non-wood

SCT-MD

7 0.084544 0.978894

lo
gi

st
ic

 s
ig

m
oi

d

ex
po

ne
nt

ia
l 94.74%

SCT-CD 96.92%

tensile 
strength-MD

10 0.081165 0.985123
lo

gi
st

ic
si

gm
oi

d 

id
en

ti
ty

96.83%

tensile 
strength-CD

97.27%

F
lu

ti
ng

-m
ed

iu
m grammage

thickness
wt% softwood
wt% hardwood
wt% non-wood

SCT-MD

6 0.014838 0.995334

hy
pe

rb
ol

ic
 ta

ng
en

t 

id
en

ti
ty

99.28%

SCT-CD 98.86%

tensile 
strength-MD

11 0.109555 0.954121

ex
po

ne
nt

ia
l

id
en

ti
ty

87.15%

tensile 
strength-CD

95.00%

were  also  sought  from the  fibre  property  data.  It  should  be  noted  that  the
intention was not to identify the extent to which the strength of a specific paper
grade within a defined liner or fluting-medium category is influenced by its fibre
or  physical  data.  This  approach  would,  of  course,  require  a  different
experimental design, taking into account a number of pulping and papermaking
parameters. Therefore, a universal sampling and testing approach was selected
involving a number of papers to cover different grades of corrugated liners and
fluting-medium available on the Greek market for the production of corrugated
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board, and searching for dependencies in each of the liners and fluting-medium
categories. 

It  is  evident  that  the  models  based  on  the  physical  properties  of  the
grammage and thickness of the papers are closer to industrial practice, where the
the  selection  of  papers  for  a  specific  corrugated  packaging  use  is  based  on
availability,  cost  and  empirical  quantification  of  performance.  The  more
advanced models using fibre origin and morphological  data require access to
advanced techniques, such as fibre analysis and fibre morphology analysers, and
thus their practical usefulness might be limited.

(a)  (b)

(c)  (d)
Fig. 1. Structure of the neural network for the prediction of compressive strength
SCT (a, c) and tensile strength (b, d) of liners (a, b) and fluting-medium (c, d). MD=
machine direction, CD = cross direction

Conclusions 

The  main  objective  of  the  work  presented  was  to  develop  models  for  the
prediction  of  the  mechanical  properties  of  corrugated  base  papers  from data
gathered on their fibre characteristics and physical properties by using multiple
linear regression and artificial neural networks (ANNs). While both approaches
provided significant models which could be used in practical testing, the results
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show that the use of ANNs led to more accurate results than the use of linear
models,  due  to  non-linearities.  In  future  research,  the  focus  will  be  on
developing  a  software  tool  implementing  the  provided  models  in  order  to
estimate paper properties and fit them to known equations for extrapolations in
corrugated board and packaging performance.
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