PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Scaling Analysis of Time Distribution between Successive Earthquakes in Aftershock Sequences

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The earthquake inter-event time distribution is studied, using catalogs for different recent aftershock sequences. For aftershock sequences following the Modified Omori’s Formula (MOF) it seems clear that the inter-event distribution is a power law. The parameters of this law are defined and they prove to be higher than the calculated value (2 – 1/p). Based on the analysis of the catalogs, it is determined that the probability densities of the inter-event time distribution collapse into a single master curve when the data is rescaled with instantaneous intensity, R(t; Mth), defined by MOF. The curve is approximated by a gamma distribution. The collapse of the data provides a clear view of aftershock-occurrence self-similarity.
Czasopismo
Rocznik
Strony
885--903
Opis fizyczny
Bibliogr. 43 poz.
Twórcy
autor
  • Plovdiv University “Paisiy Hilendarski”, Plovdiv, Bulgaria
Bibliografia
  • Aki, K. (1965), Maximum likelihood estimate of b in the formula log n = a – bM and its confidence limits, Bull. Earthq. Res. Inst. Tokyo 43, 2, 237-239.
  • Bak, P., K. Christensen, L. Danon, and T. Scanlon (2002), Unified scaling law for earthquakes, Phys. Rev. Lett. 88, 17, 178501, DOI: 10.1103/PhysRevLett. 88.178501.
  • Bottiglieri, M., C. Godano, and L. D’Auria (2009a), Distribution of volcanic earthquake recurrence intervals, J. Geophys. Res. 114, B10, B10309, DOI: 10.1029/2008JB005942.
  • Bottiglieri, M., E. Lippiello, C. Godano, and L. de Arcangelis (2009b), Identification and spatiotemporal organization of aftershocks, J. Geophys. Res. 114, B3, 15-16, B03303, DOI: 10.1029/2008JB005941.
  • Bottiglieri, M., L. de Arcangelis, C. Godano, and E. Lippiello (2010), Multiple-time scaling and universal behavior of the earthquake interevent time distribution, Phys. Rev. Lett. 104, 15, 158501, DOI: 10.1103/PhysRevLett. 104.158501.
  • Cassidy, J.F., and G.C. Rogers (1995), The rupture process and aftershock distribution of the 6 April 1992 MS 6.8 earthquake, Offshore British Columbia, Bull. Seismol. Soc. Am. 85, 3, 716-735.
  • Corral, A. (2004a), Universal local versus unified global scaling laws in the statistics of seismicity, Physica A 340, 4, 590-597, DOI: 10.1016/j.physa.2004.05.010.
  • Corral, A. (2004b), Long-term clustering, scaling, and universality in the temporal occurrence of earthquakes, Phys. Rev. Lett. 92, 10, 108501, DOI: 10.1103/ PhysRevLett.92.108501.
  • Corral, A. (2005), Mixing of rescaled data and Bayesian inference for earthquake recurrence times, Nonlinear Process. Geophys. 12, 1, 89-100.
  • Corral, A. (2006a), Dependence of earthquake recurrence times and independence of magnitudes on seismicity history, Tectonophysics 424, 3-4, 177-193, DOI: 10.1016/j.tecto.2006.03.035.
  • Corral, A. (2006b), Statistical features of earthquake temporal occurrence. In: P. Bhattacharyya and B.K. Chakrabarti (eds.), Modelling Critical and Catastrophic Phenomena in Geoscience: A Statistical Physics Approach, Lecture Notes in Physics, Vol. 705, Springer, Berlin, 191-221, DOI: 10.1007/3-540-35375-5_8.
  • Davidsen, J., and G. Kwiatek (2013), Earthquake interevent time distribution for induced micro-, nano-, and picoseismicity, Phys. Rev. Lett. 110, 6, 068501, DOI: 10.1103/PhysRevLett.110.068501.
  • Engdahl, E.R., S. Billington, and C. Kisslinger (1989), Teleseismically recorded seismicity before and after the May 7, 1986, Andreanof Islands, Alaska, earthquake, J. Geophys. Res. 94, B11, 15481-15498, DOI: 10.1029/ JB094iB11p15481.
  • Felzer, K.R., T.W. Becker, R.E. Abercrombie, G. Ekström, and J.R. Rice (2002), Triggering of the 1999 MW 7.1 Hector Mine earthquake by aftershocks of the 1992 MW 7.3 Landers earthquake, J. Geophys. Res. 107, B9, ESE 6-1– ESE 6-13, DOI: 10.1029/2001JB000911.
  • Gospodinov, D., and R. Rotondi (2001), Exploratory analysis of marked Poisson processes applied to Balkan earthquake sequences, J. Balkan Geophys. Soc. 4, 3, 61-68.
  • Gutenberg, B., and C.F. Richter (1944), Frequency of earthquakes in California, Bull. Seismol. Soc. Am. 34, 4, 185-188.
  • Horner, R.B. (1983), Seismicity in the St. Elias region of northwestern Canada and southeastern Alaska, Bull. Seismol. Soc. Am. 73, 4, 1117-1137.
  • Horner, R.B., R.J. Wetmiller, M. Lamontagne, and M. Plouffe (1990), A fault model for the Nahanni earthquakes from aftershock studies, Bull. Seismol. Soc. Am. 80, 6A, 1553-1570.
  • Jones, L.E., and D. Helmberger (1998), Earthquake sourse parameters and fault kinematics in the eastern California shear zone, Bull. Seismol. Soc. Am. 88, 6, 1337-1352.
  • Jonsdottir, K., M. Lindman, R. Roberts, B. Lund, and R. Bödvarsson (2006), Modelling fundamental waiting time distributions for earthquake se-quences, Tectonophysics 424, 3-4, 195-208, DOI: 10.1016/j.tecto.2006.03. 036.
  • Kisslinger, C., and M. Kikuchi (1997), Aftershocks of the Andreanof Islands earthquake of June 10, 1996, and local seismotectonics, Geophys. Res. Lett. 24, 15, 1883-1886, DOI: 10.1029/97GL01848.
  • Lindman, M. (2009), Physics of Aftershocks in the South Iceland Seismic Zone: Insights into the earthquake process from statistics and numerical modeling of aftershock sequences, Ph.D. Thesis, Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 592, Uppsala University, Uppsala, Sweden.
  • Lippiello, E., A. Corral, M. Bottiglieri, C. Godano, and L. de Arcangelis (2012), Scaling behavior of the earthquake intertime distribution: Influence of large shocks and time scales in the Omori law, Phys. Rev. E 86, 6, 066119, DOI: 10.1103/PhysRevE.86.066119.
  • Marekova, E. (2012), Testing a scaling law for the earthquake recurrence time distributions, Acta Geophys. 60, 3, 858-873, DOI: 10.2478/s11600-012- 0007-y.
  • Ogata, Y. (1988), Statistical models for earthquake occurrences and residual analysis for point processes, J. Am. Stat. Assoc. 83, 401, 9-27, DOI: 10.1080/ 01621459.1988.10478560.
  • Papazachos, B., and C. Papazachou (1997), The Earthquakes of Greece, ZITI, Thessloniki.
  • Ranguelov, B., S. Rizhikova, and T. Toteva (2001), The Earthquake (M7.8) Source Zone (South-West Bulgaria), Acad. Publ. House “M. Drinov”, 279 pp.
  • Senshu, T. (1959), On the time interval distribution of aftershocks, J. Seism. Soc. Japan, Zisin Ser. 2, 12, 149-161 (in Japanese with English abstract).
  • Shcherbakov, R., G. Yakovlev, D.L. Turcotte, and J.B. Rundle (2005), Model for the distribution of aftershock interoccurrence times, Phys. Rev. Lett. 95, 21, 218501, DOI: 10.1103/PhysRevLett.95.218501.
  • Shcherbakov, R., D.L. Turcotte, and J.B. Rundle (2006), Scaling properties of the Parkfield aftershock sequence, Bull. Seismol. Soc. Am. 96, 4B, S376-384, DOI: 10.1785/0120050815.
  • Solakov, D., and S. Simeonova (eds.) (1993), Bulgaria, catalogue of earthquakes 1981-1990, Geоphys. Inst. Bulg. Acad. Sci., Sofia, 39 pp.
  • Stephens, C.D., J.C. Lahr, K.A. Fogleman, and R.B. Horner (1980), The St. Elias, Alaska, earthquake of February 28, 1979: Regional recording of aftershocks and short-term, pre-earthquake seismicity, Bull. Seismol. Soc. Am. 70, 5, 1607-1633.
  • Talbi, A., and F. Yamazaki (2009), Sensitivity analysis of the parameters of earthquake recurrence time power law scaling, J. Seismol. 13, 1, 53-72, DOI: 10.1007/s10950-008-9115-1.
  • Talbi, A., K. Nanjo, K. Satake, J. Zhuang, and M. Hamdache (2013), Comparison of seismicity declustering methods using a probabilistic measure of clustering, J. Seismol. 17, 3, 1041-1061, DOI: 10.1007/s10950-013-9371-6.
  • Tomoda, Y. (1954), Statistical description of the time interval distribution of earthquakes and on its relations to the distribution of maximum amplitude, Zisin Ser. 2, 7, 155-169 (in Japanese).
  • Utsu, T. (1971), Aftershocks and earthquake statistics (2): Further investigation of aftershocks and other earthquake sequences based on a new classification of earthquake sequences, J. Fac. Sci. Hokkaido Univ. Ser.VII 3, 4, 197-266.
  • Utsu, T. (2002), Statistical features of seismicity. In: W.H.K. Lee, H. Kanamori, P.C. Jennings, and C. Kisslinger (eds.), International Handbook of Earthquake and Engineering Seismology. Part A, IASPEI, 719-732, DOI: 10.1016/S0074-6142(02)80246-7.
  • Utsu, T., Y. Ogata, and R.S. Matsu’ura (1995), The centenary of the Omori formula for a decay law of aftershock activity, J. Phys. Earth 43, 1, 1-33, DOI: 10.4294/jpe1952.43.1.
  • van Stiphout, T., J. Zhuang, and D. Marsan (2012), Seismicity declustering, Community Online Resource for Statistical Seismicity Analysis (CORSSA), DOI: 10.5078/corssa-52382934, available from: http://www.corssa.org (accessed: 2 February 2012).
  • Wiemer, S. (2001), A software package to analyze seismicity: ZMAP, Seismol. Res. Lett. 72, 3, 373-382, DOI: 10.1785/gssrl.72.3.373.
  • Wiemer, S., and K. Katsumata (1999), Spatial variability of seismicity parameters in aftershock zones, J. Geophys. Res. 104, B6, 13135-13151, DOI: 10.1029/1999JB900032.
  • Wiemer, S., M. Gerstenberger, and E. Hauksson (2002), Properties of the aftershock sequence of the 1999, MW 7.1, Hector Mine earthquake: Implications for aftershock hazard, Bull. Seismol. Soc. Am. 92, 4, 1227-1240, DOI: 10.1785/ 0120000914.
  • Zollo, A., A. Bobbio, A. Emolo, A. Herrero, and G. De Natale (1997), Modelling of ground acceleration in the near source range: the case of 1976, Friuli earthquake (M = 6.5), northern Italy, J. Seismol. 1, 4, 305-319, DOI: 10.1023/A: 1009766214032.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d9ef0f98-8e95-4b9b-8924-feb05bf8ae17
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.