PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Laser Ultrasonic Technique for Simultaneous Measurement of Thickness, Slope, and Wave Velocities for Slope Plate in the Thermoelastic Regime

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study introduces a reliable method for simultaneously determining the thickness, slope, and ultrasonic velocities of slope plates using laser ultrasonic techniques without any damage in the thermoelastic regime. The method involves solving a system of equations to determine the arrival times of multiple signals displayed on a waveform. Numerical simulations indicate that the velocity of the skimming longitudinal wave remains constant when the Rayleigh wave does not overlap with its signal. Consequently, a prediction model for aluminum alloy has been established, enabling the estimation of the constant ratio between the velocities of skimming longitudinal and bulk longitudinal waves based on the skimming longitudinal velocity obtained by scanning the generating laser along the material's surface. This ratio, approximately 0.950, facilitates the combination of the skimming longitudinal wave with the reflected and mode-converted waves from the specimen's back surface to deduce the desired parameters. The method successfully determined the thickness, slope, and wave velocities of several specimens with slopes ranging from 0% to 1.96% and a maximum thickness of about 10 mm. Evaluating the influence of the size of the disk ultrasound source produced by the unfocused laser beam, we found that the radius of the disk source should be considered when calculating the arrival time of the skimming longitudinal wave. The root mean square deviation in measuring thickness, slope, longitudinal wave velocity, and shear wave velocity were approximately 0.100 mm, 0.10 %, 70 m/s, and 20 m/s, respectively. An assessment of the measured results, based on the root mean square deviation and uncertainty across all specimens, demonstrates the practical feasibility of the proposed method.
Twórcy
  • Division of Mechanical Engineering and Science, Saitama University, 255, Shimo-ookubo, Sakura-ku, Saitama, 338-8570 Japan
autor
  • Division of Mechanical Engineering and Science, Saitama University, 255, Shimo-ookubo, Sakura-ku, Saitama, 338-8570 Japan
Bibliografia
  • 1. Hutchins D.A. Ultrasonic generation by pulsed lasers. (Physical Acoustics). San Diego (CA): Academic Press. 1988; 18: 21–123. https://doi. org/10.1016/B978-0-12-477918- 1.50008-4
  • 2. Scruby C.B., Drain L.E. Laser ultrasonic techniques and applications (1st ed.). New York (NY): CRC Press. 1990. https://doi.org/10.1201/9780203749098
  • 3. Monchalin J., Héon R., Ing R.K., Cand A., Lord M., Bussiere J.F., Bouchard P., Aussel J.D., Bernier R., Boudreault A., Padioleau C. Laser-ultrasonics for materials characterization. Nondestructive Testing and Evaluation. 1992; 7(1–6): 119–135. https://doi. org/10.1080/10589759208952993
  • 4. Lévesque D., Kruger S.E., Lamouche G., Kolarik R.V., Jeskey G.V., Choquet M., Monchalin J.P. Thickness and grain size monitoring in seamless tube-making process using laser ultrasonics. NDT & E International, 2006; 39: 622–626. https://doi. org/10.1016/j.ndteint.2006.04.009
  • 5. Fuse N., Kaneshige K., Watanabe H. Development of thickness measurement system for hot steel with laser-ultrasonic wave technology. Materials Transactions. 2014; 55(7): 1011–1016. https://doi. org/10.2320/matertrans.i-m2014811
  • 6. Kruger S.E., Lord M., Monchalin J.P. Laser ultrasonic thickness measurements of very thick walls at high temperatures. AIP Conference Proceedings. 2006; 820: 240–247. https://doi.org/10.1063/1.2184535
  • 7. Li S., Wang H., Guo R., Zhao J., Zheng K., Xu J., Chen S., Jiang Y. Non-destructive testing thickness measurement by laser ultrasound under high temperature. Optik. 2018; 172: 1140–1154. https://doi. org/10.1016/j.ijleo.2018.07.126
  • 8. Rahim M.A., Arai Y., Araki W. Effects of thickness variation due to presence of roller wake on the thickness measurement using laser ultrasonic technique. The International Journal of Advanced Manufacturing Technology. 2024; 132: 339–348. https://doi. org/10.1007/s00170-024-13397-y
  • 9. Hutchins D.A., Dewhurst R., Palmer S. Directivity patterns of laser-generated ultrasound in aluminum. The Journal of the Acoustical Society of America, 1981; 70(5): 1362–1369. https://doi. org/10.1121/1.387126
  • 10. Zhang P., Yin, C., Shen J. Directivity patterns of aser thermoelastically generated ultrasound in metal with consideration of thermal conductivity. Ultrasonics (Print). 1997; 35(3): 233–240. https://doi. org/10.1016/s0041-624x(96)00106-0
  • 11. Krylov V.V. Directivity patterns of laser-generated sound in solids: Effects of optical and thermal parameters. Ultrasonics. 2016; 69: 279–284. https:// doi.org/10.1016/j.ultras.2016.01.011
  • 12. Pei C., Demachi K., Zhu H., Fukuchi T., Koyama K., Uesaka M. Inspection of cracks using laserinduced ultrasound with shadow method: Modeling and validation. Optics and Laser Technology. 2012; 44(4): 860–865. https://doi.org/10.1016/j. optlastec.2011.11.018
  • 13. Falkenström M., Engman M., Lindh-Ulmgren E., Hutchinson B. Laser ultrasonics for process control in the metal industry. Nondestructive Testing and Evaluation. 2011; 26(3–4): 237–252. https://doi.or g/10.1080/10589759.2011.573553
  • 14. Chen S., Wang H., Jiang Y., Zheng K., Guo S. Wall thickness measurement and defect detection in ductile iron pipe structures using laser ultrasonic and improved variational mode decomposition. NDT & E International. 2023; 134: 102767. https://doi. org/10.1016/j.ndteint.2022.102767
  • 15. Gao W., Glorieux C., Thoen J. Laser ultrasonic study of Lamb waves: determination of the thickness and velocities of a thin plate. International Journal of Engineering Science. 2003; 41(2): 150–157. https:// doi.org/10.1016/s0020-7225(02)00150-7
  • 16. Gao X., Tian Y., Jiao J., et al. Non-destructive measurements of thickness and elastic constants of plate structures based on Lamb waves and particle swarm optimization. Measurement. 2022; 204: 111981. https:// doi.org/10.1016/j.measurement. 2022.111981
  • 17. Dung N.T., Arai Y. Simultaneous measurement of thickness and ultrasonic wave velocity using a combination of laser-generated multiple wave modes in the thermoelastic regime. Nondestructive Testing and Evaluation. 2024. Published online. https://doi. org/10.1080/10589759.2024.2370484
  • 18. Xu B., Shen Z., Ni X., Lu J. Numerical simulation of laser-generated ultrasound by the finite element method. Journal of Applied Physics. 2004; 95(4): 2116–2122. https://doi.org/10.1063/1.1637712
  • 19. Liu P., Nazirah AW., Sohn H. Numerical simulation of damage detection using laser-generated ultrasound. Ultrasonics. 2016; 69: 248–258. https:// doi.org/10. 1016/j.ultras.2016.03.013
  • 20. Gao J., Cao Y., Lu L., Hu Z., Wang K., Guo F., Yan Y. Study on the interaction between nanosecond laser and 6061 aluminum alloy considering temperature dependence. Journal of Alloys and Compounds. 2022; 892: 162044. https://doi.org/10.1016/j. jallcom.2021.162044
  • 21. Magnes J., Odera D., Hartke J., Fountain M., Florence L., Davis V. Quantitative and Qualitative Study of Gaussian Beam Visualization Techniques. 2008. https://doi.org/10.48550/arXiv.physics/0605102
  • 22. Achenbach J.D. Laser excitation of surface wave motion. Journal of the Mechanics and Physics of Solids. 2003; 51: 1885–1902. https://doi.org/10.1016/j. jmps.2003.09.021
  • 23. Bescond C., Monchalin J., Lévesque D., Gilbert A., Talbot R., Ochiaiet M. Determination of residua stresses using laser-generated surface skimming longitudinal waves. Proceedings Nondestructive Evaluation and Health Monitoring of Aerospace Materials, Composites, and Civil Infrastructure IV. 2005; 5767. https://doi.org/10.1117/12.620374
  • 24. Canfield R.A., Ziaja-Sujdak A., Pitre J.J., O’Donnell M., Ambrozinski L., Pelivanov I. Simultaneous determination of Young’s modulus and Poisson’s ratioin metals from a single surface using laser-generated Rayleigh and leaky surface acoustic waves. Journal of Applied Physics, 2022; 132(23): 235103. https:// doi.org/10.1063/5.0124395
  • 25. Schroder C., Scott W.R. On the complex conjugate roots of the Rayleigh Equation: The leaky surface wave. Journal of the Acoustical Society of America. 2001; 110(6): 2867–2877. https://doi. org/10.1121/1.1419085
  • 26. Joint Committee for Guides in Metrology (JCGM). Evaluation of measurement data - Guide to the expression of uncertainty in measurement. BIPM; 2008. Standard No. JCGM 100:2008.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d9eedba7-eb96-42fe-8f8d-0f47448357af
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.