Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper, a problem of transverse free vibration of a double-nanobeam-system is considered. The nanobeams of the system are coupled by an arbitrary number of translational springs. The solution of the problem by using the Green’s functions properties is obtained. A numerical example is presented.
Rocznik
Tom
Strony
23--31
Opis fizyczny
Bibliogr. 9 poz., rys.
Twórcy
autor
- Institute of Mathematics, Czestochowa University of Technology, Częstochowa, Poland
autor
- Institute of Mathematics, Czestochowa University of Technology, Częstochowa, Poland
Bibliografia
- [1] Reddy J.N., Nonlocal theories for bending, buckling and vibration of beams, International Journal of Engineering Science 2007, 45, 288-307.
- [2] Aydogdu M., A general nonlocal beam theory: its application to nanobeam bending, buckling and vibration, Physica E 2009, 41, 1651-1655.
- [3] Murmu T., Adhikari S., Nonlocal effects in the longitudinal vibration of double-nanorod systems, Physica E 2012, 43, 415-422.
- [4] Ansari R., Hisseini K., Darvizeh A., Daneshian B., A sixth-order compact finite difference method for non-classical vibration analysis of nanobeams including surface stress effects, Applied Mathematics and Computation 2013, 219, 4977-4991.
- [5] Eltaher M.A., Alshorbagy A.E., Mahmoud F.F., Vibration analysis of Euler-Bernoulli nanobeams by using finite element method, Applied Mathematical Modelling 2013, 37(7), 4787-4797.
- [6] Duffy D.G., Green’s Functions with Applications, Chapman & Hall/CRC, 2001.
- [7] Kukla S., Funkcje Greena i ich zastosowania, Wydawnictwo Politechniki Częstochowskiej, Częstochowa 2009.
- [8] Ciekot A., Kukla S., Free longitudinal vibrations of nanorods system, Journal of Applied Mathematics and Computational Mechanics 2013, 2(12), 15-22.
- [9] Richards D., Advanced Mathematical Methods with Maple, Cambridge University Press, 2009.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d9eab22d-2121-4ed2-8e85-5ac8187249a8