PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Enhanced Reliability for Winding Machine via New Fault Tolerant Control Based on RST-Backstepping Controller

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Due to the external disturbances, model uncertainties, strong coupling, and occurred faults, the winding machine presents a great control challenge. In order to deal with these problems, this paper presents the formulation of a novel scheme of fault tolerant control (FTC) for three-motor web-winding systems; it is concerned with the nonlinear robust backstepping control based on the combination of RST and backstepping controllers where the process is modelled by a nonlinear model. The main contribution of the paper is that the approach developed here summarises the performance of RST and backstepping controllers in order to design a robust controller capable of eliminating external disturbances and sensor faults affecting the system. The stability of the whole system is proven using the Lyapunov theory. Finally, analysis in comparison with the conventional backstepping controller and simulations in the MATLAB environment are accomplished to confirm the efficiency of the proposed method.
Wydawca
Rocznik
Strony
229--241
Opis fizyczny
Bibliogr. 28 poz., rys., tab.
Twórcy
  • Laboratory of Innovative Technologies ENST Ex Biomédical, 16087 Bordj El Kiffan, Algiers, Algeria
  • Laboratory of Innovative Technologies ENST Ex Biomédical, 16087 Bordj El Kiffan, Algiers, Algeria
  • Electrical Engineering and Computing Faculty, USTHB, Algiers, Algeria
  • Department of Electrical Engineering, Process Control Laboratory, ENP, Algiers, Algeria
  • Department of Electrical Engineering, Process Control Laboratory, ENP, Algiers, Algeria
Bibliografia
  • Ali, Z. A., Wang, D-B., Javed, R. and Akbar, A. (2016). Modeling & Controlling the Dynamics of Tri-rotor UAV Using Robust RST Controller with MRAC Adaptive Algorithm. International Journal of Control and Automation, 9(3), pp. 61–76.
  • Arsalan, M., Iftikhar, R., Ahmad, I., Hasan, A., Sabahat, K. and Javeria, A. (2018). MPPT for Photovoltaic System Using Nonlinear Backstepping Controller with Integral Action. Solar Energy, 170, pp. 192–200.
  • Bodó, Z. and Lantos, B. (2019). Integrating Backstepping Control of Outdoor Quadrotor UAVS. Periodica Polytechnica Electrical Engineering and Computer Science, 63(2), pp. 122–132.
  • Brahim, M., Bahri, I. and Bernard, Y. (2017). Real Time Implementation of H-infinity and RST Motion Control of Rotary Traveling Wave Ultrasonic Motor. Mechatronics, 44, pp. 14–23.
  • Chen, CX., Xie, YX. and Lan, YH. (2015). Backstepping Control of Speed Sensorless Permanent Magnet Synchronous Motor Based on Slide Model Observer. International Journal of Automation and Computing, 12(2), pp. 149–155.
  • Chu, X. Nian, X. Wang, H. and Xiong, H. (2019). Distributed Fault Tolerant Tracking Control for Large-Scale Multi-motor Web-winding Systems. IET Control Theory & Applications, 13(4), pp. 543–553.
  • Dashkovskiy, S. N. and Pavlichkov, S. S. (2018). Integrator Backstepping for Uncertain Nonlinear Systems with Non-Smooth Dynamics. European Journal of Control, 40, pp. 68–79.
  • Elbakri, A. and Boumhidi, I. (2020). A New Intelligent Fault-tolerant Control Scheme for Wind Energy Systems Under Actuator Faults. European Journal of Electrical Engineering, 22(3), pp. 265–272.
  • Elmahfoud, M., Bossoufi, B., Taoussi, M., Elouanjli, N. and Derouich, A. (2020). Comparative Study Between Backstepping Adaptive and Field Oriented Controls for Doubly Fed Induction Motor. European Journal of Electrical Engineering, 22(3), pp. 209–221.
  • Haouari, F. O., Bali, N., Tadjine, M. O. and Boucherit, M. S. (2018). An Observer for Magnetic Levitation Control Based on a Coefficient Diagram Method and Backstepping. Archives on Electrical Engineering, 67(2), pp. 403–417.
  • Haouari, F., Gouri, R., Bali, N., Tadjine, M. and Boucherit, M. S. (2019). An Artificial Bee Optimization Based on Command Filtered CDM-Backstepping For Electro-Pneumatic System. Periodica Polytechnica Electrical Engineering and Computer Science, 63(3), pp. 235–241.
  • Haouari, F., Gouri, R., Bali, N., Tadjine, M. and Boucherit, M. S., (2020). Performance Enhancement of Electrohydraulic Servo System Using Teaching Learning-Based Optimization and CDM-Backstepping with Disturbance Observer. Journal of Control Automation and Electrical Systems, 31(4), pp. 926–934.
  • Herizi, O. and Barkat, S. (2019). Backstepping Control Associated to Modified Space Vector Modulation for Quasi Z-Source Inverter Fed by a PEMFC. European Journal of Electrical Engineering, 21(2), pp. 125–132.
  • Hou, H., Nian, X., Xiong, H., Wang, Z. and Peng, Z. (2016). Robust Decentralized Coordinated Control of a Multimotor Web-Winding System. IEEE Transactions on Control Systems Technology, 24(4), pp. 1495–1503.
  • Jiang, T., Lin, D. and Song, T. (2018). Finite-Time Backstepping Control for Quadrotors with Disturbances and Input Constraints. IEEE Access, 6, pp. 62037–62049.
  • Karabacak, M. and Eskikurt, H. I. (2011). Speed and Current Regulation of a Permanent Magnet Synchronous Motor via Nonlinear and Adaptive Backstepping Control. Mathematical and Computer Modelling, 53(9–10), pp. 2015–2030.
  • Khadraoui, S., Nounou, H. N., Nounou, M. N., Datta, A. and Bhattacharyya, S. P. (2014). A Measurement-based Technique for Designing Fixed-order RST Controllers and Application to a Coupled Water Tank System. Systems Science & Control Engineering, 2(1), pp. 484–492.
  • Klimkowski, K. (2017). Compensation Methods of Current and Speed Sensor Faults for a Vector Controlled Induction Motor Drive System. Power Electronics and Drives, 2(37), pp. 1.
  • Klimkowski, K. (2016). An Artificial Neural Networks Approach to Stator Current Sensor Faults Detection for DTC-SVM Structure. Power Electronics and Drives, 1(36), pp. 1.
  • Li, C., Zhang, Y. and Li, P. (2017). Full Control of a Quadrotor Using Parameter-scheduled Backstepping Method: Implementation and Experimental Tests. Nonlinear Dynamic, 89(2), pp. 1259–1278.
  • Liu, Y., Liu, X., Jing, Y. and Zhou, S. (2018). Adaptive Backstepping H∞ Tracking Control with Prescribed Performance for Internet Congestion. ISA Transactions, 72, pp. 92–99.
  • Medjmadj, S. (2019). Fault Tolerant Control of PMSM Drive Using Luenberger and Adaptive Back-emf Observers. European Journal of Electrical Engineering, 21(3), pp. 333–339.
  • Mohamed, H., Abdelmadjid, B. and Lotfi, B. (2020). Improvement of Direct Torque Control Performances for Induction Machine Using a Robust Backstepping Controller and a New Stator Resistance Compensator. European Journal of Electrical Engineering, 22(2), pp. 137–144.
  • Ponsart, J. C., Theilliol, D. and Aubrun, C. (2010). Virtual Sensors Design for Active Fault Tolerant Control System Applied to a Winding Machine. Control Engineering Practice, 18(9), pp.1037–1044.
  • Pagilla, P. R., Siraskar, N. B. and Dwivendula, R. V. (2007). Decentralized Control of Web Processing Lines. IEEE Transactions on Control Systems Technology, 15(1), pp. 106–117.
  • Rodrigues M., Sahnoun M., Theilliol D. and Ponsart J. C. (2013). Sensor Fault Detection and Isolation Filter for Polytopic LPV Systems: A Winding Machine Application. Journal of Process Control, 23(6): 805–816.
  • Xiao, Y., Huang, S., Chen, H. and Xu, B. (2011). Research on Tension Control Strategy of Battery Pole-piece Winding and Unwinding System Based on Fault-tolerant Control. Procedia Engineering, 15(1), pp. 5073–5078.
  • Yu, J., Shi, P. and Zhao, L. (2018). Finite-Time Command Filtered Backstepping Control for a Class of Nonlinear Systems. Automatica, 92, pp. 173–180.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d9e9956e-06be-4f17-87ed-5a0256289697
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.