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Abstract. The report presents a new model of linear elastodynamics of periodic compos-

ites. The study deals with a certain extension of the ideas yield tolerance modelling. In the 

proposed model the displacement field is determined by an infinite number of  unknowns. 

This disappointment seems to be apparent in many cases of periodicity since the sequence 

of tolerance shape functions used in the modelling procedure is not unique and opens 

the possibility to control the model equations. It has been formulated and solved, within 

the framework of the resulting model, the problem of independence short-term and long-term 

perturbations by linearly elastic composite solid. 
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1. Formulation of the problem 

The subject of consideration is a periodic linearly elastic composite. Material 

properties of the composite are described by the elastic modulus tensor represented 

in the distinguished Carthesian coordinate system by )( ijklC=A , 3,2,1,,, =lkji , 

and by mass density ρ , which are ∆-periodic fields with respect to the related 

periodicity cell m

R⊂∆ . In the sequel )(∆≡ diamλ  will be referred to as the micro- 

structural parameter. The number of periodicity direction is denoted here by m  
and hence m  is an arbitrary positive integer less than .3  Denoting body forces 

by b we can rewrite first type linear elasticity initial-boundary value problem by 
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To equations (1) the continuity condition for stresses of normal interfaces Γ  

between components should be attached. It will be formalized in the form 

 0wAnwAnwq =∇−∇=∇
−+
)()()]([

TT  (3) 

which should be satisfied almost everywhere in Γ . In (2) indices “+“ and “−“ 

identify different sides of interfaces between components. 

Material properties of the linear elastic composite under consideration is de-

scribed by the stiffness modulus )( ijklC≡A , 3,2,1,,, =lkji , and the mass density 

)(zρρ = , 3
Rz∈ . Fields )(xCC ijklijkl =  and )(xρρ =  should be ∆-periodic with 

respect to the distinguished periodicity cell m

R⊂∆ . Symbol m

Rx∈ , 2,1=m , 

denotes here the orthogonal projection of 3
Rz∈  onto the periodicity directions space 

being a certain linear subspace of 3
R . At the same time m

Ry
−

∈
3  describes direc-

tions of 3
Rz∈  perpendicular to the periodicity directions. Hence 3

),( Ryxz ∈≡ . 

Symbol 
3
R∈b  denotes body forces. 

Every decomposition 
shortlong www += , in which shortw  denotes a certain 

countable sum of various-periodic partial displacements such that 

0wAnwAn =∇=∇
−+
)()( short

T

short

T  and shortlong www −≡  will be referred to as 

a short-long wave decomposition of the displacement field. In every such decom-

position longww =〉〈  and hence longw  represents an averaged displacement field. 

If in the framework of the model of linear elasticity (exact or averaged) 1° via 

basic unknowns of which terms 
shortw  and longw  can be determined the model will 

be referred to as a shortwave - longwave model. Moreover, if in the framework 

of this model 2° equations of this model can be separated into two different sets 

of equations the first or second of which exclusively describes one part shortw
 

or longw  of the displacement field then we will say that the composite moves 

(in the framework of this model) impaired long- and short-wave perturbations 

regardless. This property is independent on the body force field b. 

It must be emphasized that the existence of the shortwave - longwave model 

is an individual property of the composite. 

The aim of the paper is to obtain  the shortwave - longwave model of the linear 

elasticity. This model will be in fact a certain extension of the averaged model 

of elastodynamics, built and repeatedly discussed  by Woźniak, cf. [1-3]. 

2. Tolerance averaging 

In the framework of the tolerance averaging approach the displacement field 

is investigated in the form of the well-known micro-macro decomposition 
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in which fields )(
00
zww =  and )(zΑΑ = ψψ , NA ,...,1= , 

3
Rz∈  referred to as 

the averaged displacement field and the  fluctuation amplitude field, respectively, 

are basic unknowns of the resulting tolerance model. Functions )(= xhh
AA  are 

shape functions here which are ∆-periodic and should be specified in every special 

problem. Basic unknowns )(
00
zww =  and )(zΑΑ = ψψ  as well as the finite 

sequence of shape functions )(= xhh
AA  should satisfy certain additional condi-

tions. In the framework of this paper the most important are 0=〉〈 ρ
A
h  and 

0=〉〈 A
A
h . For particulars the reader is referred to [1-3]. 

In the framework of the refined tolerance model which we are to introduce 

in this paper we shall assume that the residual displacement field defined as 

Mres
www −≡  can be represented as the Fourier expansion 

 )(),,(),,(
0

xtyxtyx
k

k

k
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+∞

=

= aw  (5) 

with respect to the Fourier basis )(x
rr

ϕϕ = . To this and we shall assume that 

the finite sequence of shape functions )(= xhh
AA

 is supported by the additional 

condition 

 0wAnwAnwq =∇=∇=∇
−+
)()()]([
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T
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T
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 (6) 

Hence in the framework of the refined tolerance model the displacement field will 

be investigated in the form of the decomposition  

 shortlong www +=  (7) 

in which 
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where 
0

00
ϕawu +≡  and 








≡

λ
λ

x
gxh

AA
)(  for 

m

Rx∈ . Here ...,2,1=p  and in the 

sequel ...,2,1,, =rqp . Under the assumption (6) the decomposition (7) is a proper 

decomposition of the displacement field onto shortwave and longwave parts defined 

in the first section. 

To make the choice of shape functions and Fourier basis independent on the 

material properties of the composite components we shall restrict the Fourier basis 
p
ϕ  to that which satisfy condition 

 0=∇
Γ

p
ϕ  (9) 
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stronger than (6). It yields 

 0000 =〉〈=〉〈=〉〈=〉〈 KgcgKc
AApp

ϕϕ  (10) 

The formal realization of the tolerance modeling  
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leads, under denotations [ ]OO
mper

,,,,,
1

KK ∂∂≡∇  and [ ]
31

,,,,, ∂∂≡∇
+
KK

mper
OO , 

to the refined tolerance model equations 
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In fact, the refined tolerance model is a certain shortwave - longwave model. 

In general, the composite, the elastodynamics of which is described by (12), 

does not have to move (in the framework of this model) impaired long- and short- 

-wave perturbations regardless. 

Unfortunately, (12) consists on infinite number of equations for an infinite 

number of basic unknown fields and hence in this form this model is useless. 

3. The shape functions graduation 

The drawback of the infinite number of basic unknowns in equations (12) seems 

to be a serious mathematical problem. Fortunately, if the finite sequence of shape 

functions is properly chosen, it can be graduating. This procedure  boils down to 

introducing the infinite sequence of n-tuples ),...,,( )()(
2

)(
1

n
N

nn ggg  enumerated by n 

for which 

 0)(lim)( )( == xgxg n
AA  (13) 
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The graduation procedure reduces the refined model (12) to the simplest one: 
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In the next section we are to prove that two-phased laminated composite moves 

(in the framework of refined tolerance model) impaired long- and short-wave 

perturbations, regardless. 

4. Special case 

For  two-phased laminated composite the Fourier basis will be introduced in the 

form 
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At the same time the single saw-like function will be treated as the finite sequence 

of shape functions ),...,,(
21 N
ggg . Here N = 1. The rescaling of the saw-like func- 

 

tion will be realized according to the formula, cf. Fig. 1. 
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Fig. 1. The graduation of the saw-like function 

In the examined case (12) takes the form 

 0][}{ =∇+ uAA
nper

ψ  (17) 

for the modified fluctuation field 
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531
++++≡ aaaψψ  (18) 

This new field can be reduced from the refined model system equations and finally 

(12) takes the form in which the long-wave part longw  of the displacement field w 

is represented here by u , namely uw =long , and should satisfy single equation 
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while the short-wave part 
shortw  of w  is represented by Fourier coefficients ,

p
a   

which should satisfy the separate system of equations 
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where 

 
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and the effective stiffness matrix has the well-known form 
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T

ikijHij CCCCC
−

−〉〈=〉〈 , 3,2,1,,, =lkji , but in the modeling pro- 

cedure presented in this paper it has been introduced without taking into account 

the limit passage to the asymptotic case 0→λ . The short-wave part of the refined 

model is the system of a second order differential equation with respect to the 

directions perpendicular to the periodicity directions and is strictly related to the 

analysis of the existence and finding of different solutions of the second order 

quadratic matrix equation, cf. [4]. 

6. Final remarks 

In the paper the refined model of linear elastodynamics of periodic composites 

is proposed. Derivation of this model is based on the idea of the adjustment of the 

residual field between the displacement field and its micro-macro approximation 

onto a certain series with sufficiently good properties. This adjustment is realized 

by imposing onto a finite sequence of shape functions the additional condition of 

continuity of the tolerance stresses normal to the interfaces. Under this condition 

the residual displacement is a continuously differentiable field and hence opens the 

way to find solutions to the initial-boundary problems using theory of the Fourier 

series. 

In the framework of the proposed refined model the special case of two-phased 

laminated composite has been examined. In this special case the effective stiffness 

tensor has been obtained. However, it coincides with the same tensor in the frame-

work of other known approaches, but it is obtained here without using the limit 

passage to the asymptotic case. 
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Moreover, two-phased laminated composite moves (in the framework of refined 

tolerance model) impaired long- and short-wave perturbations regardless. 

The method of modeling similar to that used in the paper has been applied 

in [5-12]. 
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