PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of liming on kinetics of sewage sludge pyrolysis

Identyfikatory
Warianty tytułu
PL
Wpływ wapnowania osadów ściekowych na kinetykę ich pirolizy
Języki publikacji
EN
Abstrakty
EN
Thermogravimetry (TG) is the fast and reliable method for characterization of thermal decomposition of any material and in particular to determine the kinetics of pyrolytic decomposition of sewage sludge. Two types of sewage sludge with and without addition of lime were investigated from kinetic point of view. For TG analysis samples of selected sewage sludge were heated under the inert atmosphere of argon with constant heating rate from 303 to 1273 K; the three heating rate β = 5, 10 and 20 K/min were chosen. The iso-conversion methods of Friedman and Ozawa-Flynn-Wall were employed for analysis of TG results. As the sewage sludge decomposition is very complex process it cannot be described by a simple stoichiometric equation, therefore the so called lumping of reactions in the selected temperature ranges were used with detailed principles arising from visual analysis of DTG curve. The deconvolution of DTG curves performed according to Fraser-Suzuki asymmetric profile allowed the identification of number of lumps and their contribution to the overall mass loss. So the decomposition of sewage sludge with lime addition could be described with five groups of reactions while the one without lime by means of six lumps. The thermal decomposition of sewage sludge was assumed to proceed according to the scheme of parallel concurrent independent reactions of n-th order. The values of the apparent activation energies at different constant values of conversion degrees were determined by the iso-conversion analysis. To estimate the kinetic parameters the non-linear regression with Levenberg-Marquart optimization procedure was used. The kinetic parameters such as activation energy, pre-exponential factor, reaction order and fraction of total mass loss associated with a given reaction were determined. The impact of sewage sludge liming revealed in essential differences of pyrolysis products and pyrolysis kinetics of limed sludge and without lime one was highlighted.
Rocznik
Strony
175--188
Opis fizyczny
Bibliogr. 16 poz., wykr., tab.
Twórcy
  • Faculty of Process and Environmental Engineering, Lodz University of Technology, ul. Wólczańska 213, 90-924 Łódź, Poland, phone +48 42 631 37 15
  • Faculty of Process and Environmental Engineering, Lodz University of Technology, ul. Wólczańska 213, 90-924 Łódź, Poland, phone +48 42 631 37 15
  • Faculty of Process and Environmental Engineering, Lodz University of Technology, ul. Wólczańska 213, 90-924 Łódź, Poland, phone +48 42 631 37 15
Bibliografia
  • [1] Samolada MC, Zabaniotou AA. Waste Manage. 2014;34(2):411-420. DOI: 10.1016/j.wasman.2013.11.003.
  • [2] Horne PA, Williams PT. Fuel. 1996;75:1051-1059. DOI: 10.1016/0016-2361(96)00081-6.
  • [3] Hu X, Gholizadeh M. J Energy Chem. 2019;39:109-143. DOI: 10.1016/j.jechem.2019.01.024.
  • [4] Čížková A, Juchelková D, Raclavská H. Chem Process Eng. 2011;32(1): 57-68. DOI: 10.2478/v10176-011-0005-7.
  • [5] Tang S, Tian S, Zheng C, Zhang Z. Energy Fuels. 2017;31:5079-5087. DOI: 10.1021/acs.ebergyfuels.6b03256.
  • [6] Liu H, Zhang Q, Hu H, Xiao R, Li A, Qiao Y, et al. Fuel. 2014;134:514-520. DOI: 10.1016/j.fuel.2014.06.020.
  • [7] Liu H, Zhang Q, Hu H, Liu P, Hu X, Li A, et al. Proc Combust Inst. 2015;35(3):2759-2766. DOI: 10.1016/j.proci.2014.06.034.
  • [8] Urych B, Smolinski A. Energy Fuels. 2016;30:4869−4878. DOI: 10.1021/acs.energyfuels.6b00332.
  • [9] Hernandez AB, Ferrasse JH., Akkache S, Roche N. Drying Technol. 2015;33(11):1318-1326. DOI: 10.1080/07373937.2015.1036283.
  • [10] Bedyk T, Nowicki L, Stolarek P, Ledakowicz S. J Residual Sci Technol. 2009;6:3-10. DOI: 1544-8053/09/01 003-08.
  • [11] Collard FX, Blin J. Renew Sustain Energy Rev. 2014,38:94-608. DOI: 10.1016/j.rser.2014.06.013.
  • [12] Shao J, Yan R, Chen H, Yang H, Lee DH. Fuel Processing Technol. 2010;91(9):1113-1118. DOI: 10.1016/j.fuproc.2010.03.023.
  • [13] Stolarek P, Ledakowicz S. Thermochim Acta. 2005;433:200-208. DOI: 10.1016/j.tca.2005.03.012.
  • [14] Ranzi E, Dente M, Goldaniga A, Bozzano G, Faravelli T. Progress Energy Combust Sci. 2001;27:99-139. DOI: 10.1016/S0360-1285(00)00013-7.
  • [15] Brown ME. Handbook of Thermal Analysis and Calorimetry. Vol. 1 Principles and practice. Amsterdam: Elsevier; 1998. ISBN: 044482085X.
  • [16] Mianowski A. J Therm Anal Cal. 2003;74:953-973. DOI: 10.1023/B:JTAN.0000011027.59338.54.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d9e4b1c8-73b9-422a-a597-73a52004b7c0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.