PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Studies reducing the H2S from natural gas of using polyimide membrane

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Określenie możliwości separacji siarkowodoru ze strumienia gazów na membranach poliimidowych
Języki publikacji
EN
Abstrakty
EN
A laboratory pressure system with a membrane module was set up allowing to perform flow measurements and separation of gases and vapors. At the membrane polyimide module permeability test was conducted four mixes CH4–H2S concentrations ranging from 0.28% to 17.9% H2S, with different ratios of the permeate flow to the retentate inlet pressures in the range of 10÷96 bar. It has been found that with increasing H2S content in the inlet gas, methane losses decrease. Tests were carried out for different inlet gas flows at breakdown coefficients in the range of 0.08÷0.45.The study was conducted in a high pressure, aggressive environment for highly toxic gases. The article shows the possibility of changing the composition of product streams in the conducted membrane separation process. Three times the hydrogen sulfide content in the permeate was increased. The degree of H2S removal from the inlet gas was up to 90%. It has been found that membrane techniques can be successfully used in the preliminary stage of the natural gas sweetening process.
PL
Zestawiono laboratoryjną instalację ciśnieniową z modułem membranowym pozwalającą wykonywać pomiary przepływu i separacji gazów i par. Na module z membranami poliimidowymi przeprowadzono badania przepuszczalności czterech mieszanek CH4–H2S o stężeniach od 0,28 % do 17,9% H2S, przy różnych stosunkach przepływu permeatu do retentatu dla ciśnień wlotowych w zakresie 10÷96 bar. Stwierdzono, że ze wzrostem zawartości H2S w gazie wlotowym, maleją straty metanu. Testy prowadzone były dla różnych przepływów gazu wlotowego przy współczynnikach podziału na strumienie w zakresie 0,08÷0,45. Badania prowadzono w wysokociśnieniowym, agresywnym środowisku dla gazów wysokotoksycznych. W artykule wykazano możliwość zmiany składu strumieni produktowych w prowadzonym procesie separacji membranowej. Uzyskano trzykrotny wzrost zawartości siarkowodoru w permeacie. Stopień usunięcia H2S z gazu wlotowego dochodził do 90%. Stwierdzono, że techniki membranowe mogą z powodzeniem być zastosowane we wstępnym etapie procesu odsiarczania gazu ziemnego.
Czasopismo
Rocznik
Strony
511--517
Opis fizyczny
Bibliogr. 37 poz., rys.
Twórcy
autor
  • Oil and Gas Institute - National Research Institute, ul. Lubicz 25 A, 31-503 Kraków
autor
  • Oil and Gas Institute - National Research Institute, ul. Lubicz 25 A, 31-503 Kraków
Bibliografia
  • [1] Ahmad F., Lau K.K., Shariff A.M., Murshid G.: Process simulation and optimal design of membrane separation system for CO2 capture from natural gas. Computers and Chemical Engineering 2012, vol. 36, pp. 119–128.
  • [2] Alcheikhhamdon Y., Hoorfar M.: Natural gas purification from acid gases using membranes. Chemical Engineering and Processing: Process Intensification 2017, vol. 120, pp. 105–113.
  • [3] Askari M., Chua M.L., Chung T.S.: Permeability, solubility, diffusivity and PALS data of cross-linkable 6FDA-based copolyimides. Ind. Eng. Chem. Res. 2014, vol. 53, no. 6, pp. 2449–2460.
  • [4] Baker R.: Membrane technology and applications. The McGraw-Hill, USA 2000, ISBN 0-07-135440, pp. 301–353.
  • [5] Baker R.W.: Future Directions of Membrane Gas Separation Technology. Ind. Eng. Chem. Res. 2002, vol. 41, pp. 1393–1411.
  • [6] Bernardo P., Drioli E., Golemme G.: Membrane Gas Separation: A review/State of the Art. Ind. Eng. Chem. 2009, vol. 48, pp. 4638–4663.
  • [7] Bhide B.D., Stern S.A.: Membrane processes for the removal of acid gases from natural gas. Journal of Membrane Science 1993, vol. 81, pp. 209–237.
  • [8] Chatterjee G., Houde A., Stern S.: Poly (ether urethane) and poly (ether urethane urea) membranes with high H2S/CH4 selectivity. Journal of Membrane Science 1997, vol. 135, no. 1, pp. 99–106.
  • [9] Chenar M.P., Savoji H., Soltanieh M., Matsuura T., Tabe-Mohammadi A.: Removal of hydrogen sulfide from metane using commercial polyphenyle oxide and Cardo-type polyimide hollow fiber membranes. Korean J. Chem. Eng. 2011, vol. 28, no. 3, pp. 902–913.
  • [10] Cnop T., Dormund D., Schott M.: Continued Development of gas separation membranes for higly sour service. Materiały prezentacji UOP LLC, 2016.
  • [11] Favvas E.P., Katsaros F.K., Papageorgiou S.K., Sapalidis A.A., Mitropoulos A.C.: A review of the latest development of polyimide based membranes for CO2 separations. Reactive and Functional Polymers 2017, vol. 120.
  • [12] Gabrielli P., Gazzani M., Mazzotti M.: On the optimal design of membrane based gas separation processes. Journal of Membrane Science 2017, vol. 526, pp. 118–130.
  • [13] George G., Bhoria N., AlHallaq S., Abdala A., Mittal V.: Polymer membranes for acid gas removal from natural gas. Separation and Purification Technology 2016, vol. 158, pp. 333–356.
  • [14] Ghasemzadeh K., Jafari M., Sari A., Babalou A.A.: Performance investigation of membrane process in natural gas sweetining by membrane process: modeling study. Journal of Chemical Product and Process Modeling 2016, vol. 11, pp. 2015–0054.
  • [15] Hao J., Rice P.A., Stern S.A.: Upgrading low-quality natural gas with H2S- and CO2-selective polymer membranes: Part II. Process design, economics, and sensitivity study of membrane stages with recycle streams. Journal of Membrane Science 2008, vol. 320, no. 1–2, pp. 108–122.
  • [16] Holewa J., Szlęk M.: Ocena jakości gazów palnych. Nafta-Gaz 2013, no. 6, pp. 450–454.
  • [17] Hosseini S.S., Roodashti S.M., Kundu P.K., Tan, N.R.: Transport Properties of Asymmetric Hollow Fiber Membrane Permeators for Practical Applications: Mathematical Modelling for Binary Gas Mixtures. Canadian Journal of Chemical Engineering 2015, vol. 93, no. 7, pp. 1275–1287.
  • [18] Huang Y., Merkel T.C., Baker W.: Pressure ratio and impact on membrane gas separation processes. Journal of Membrane Science 2014, vol. 1463, pp. 33–40.
  • [19] Janocha A.: Badania obniżania zawartości CO2 w gazie ziemnym przy użyciu membrany poliimidowej. Nafta-Gaz 2016, no. 3, pp. 186–191, DOI: 10.18668/NG.2016.03.05.
  • [20] Janocha A.: Określenie możliwości odwadniania gazu ziemnego na membranach polimerowych. Nafta-Gaz 2017, no. 7, pp. 502–509, DOI: 10.18668/NG.2017.07.08.
  • [21] Klass D.L., Landahl C.D.: Gas sweetening by membrane permeation. US Patent 4561864, 1985 (2006).
  • [22] Koros W.J., Mahajan R.: Pushing the limits on possibilities for large scale gas separation: which strategies? Journal of Membrane Science 2000, vol. 175, no. 2, pp. 181–196.
  • [23] Kraftschik B., Koros W.J., Johnson J.R.: Dense film polyimide membranes for aggressive sour gas feed separations. Journal of Membrane Science 2013, vol. 428, no. 1, pp. 608–619.
  • [24] Lau C.H., Li P., Li F.Y., Chung T.S., Paul D.R.: Reverse-selective polymeric membranes for gas separations. Progress In Polymer Science 2013, vol. 38, no. 5, pp. 740–766.
  • [25] Lin H.: High-Performance Polymer Membranes for natural gas sweetening. Advances Materials 2006, vol. 18, pp. 39–44.
  • [26] Liu G., Li N., Miller S.J., Kim D., Yi S., Labreche Y., Koros W.J.: Molecularly Designed Stabilized Asymmetric Hollow Fiber Membranes for Aggressive Natural Gas Separation. Angewandte Chemie 2016, vol. 128, no. 44, pp. 13958–13962.
  • [27] Niknejad S.M.S., Savoji H., Pourafshari Chenar M., Soltanieh M.: Separation of H2S from CH4 by polymeric membranes at different H2S concentrations. International Journal of Environmental Science and Technology 2017, vol. 14, nr 2, pp. 375–384.
  • [28] Pandey P., Chauhan R.S.: Membranes for gas separation. Progress in Polymer Science 2001, vol. 26, no. 6, pp. 853–893.
  • [29] Piskowska-Wasiak J.: Uzdatnianie biogazu do parametrów gazu wysokometanowego. Nafta-Gaz 2014, no. 2, pp. 94–105.
  • [30] Sanders D.F., Guo R., Smith Z.P., Stevens K.A., Liu Q., McGrath J.E., Paul D.R., Freeman B.D.: Influence of polyimide precursor synthesis route and ortho-position functional group on thermally rearranged (TR) polymer properties. Journal of Membrane Science 2014, vol. 463, pp. 73–81.
  • [31] Scholes C.A., Stevens G.W., Kentish S.E.: Membrane gas separation applications in natural gas processing. Fuel 2012, vol. 96, pp. 15–28.
  • [32] Szwast M.: Membrany polimerowe do rozdzielania gazów. Przemysł Chemiczny 2012, vol. 91, no. 7, pp. 1356–1361.
  • [33] Szwast M., Janocha A.: Research on supported liquid membrane to adjust (reduce) the nitrogen content in natural gas. Proceedings The 6th Membrane Conference of Visegrad Countries 15–19.09.2013, Warsaw, pp. 252–255.
  • [34] UBE company information materials.
  • [35] Vaughan J.T., Koros W.J.: Analysis of feed stream acid gas concentration effects on the transport properties and separation performance of polymeric membranes for natural gas sweetening: A comparison between a glassy and rubbery polymer. Journal of Membrane Science 2014, vol. 465, pp. 107–116.
  • [36] White L.S., Blinka T.A., Kloczewski H.A., Wang I.: Properties of a polyimide gas separation membrane in natural gas streams. Journal of Membrane Science 1995, vol. 103, pp. 73–76.
  • Legal and normative acts
  • [37] PN-C 94752:2011 Gaz ziemny. Jakość gazu w sieci przesyłowej.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d9e3e9c2-18f9-40df-b767-3c77b427c011
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.