PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

N-N Bond Lengths and Initiation Reactivity of Nitramines

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
For the 16 selected nitramines, it is shown that an increase in the energy content of these molecules (represented by enthalpies of formation) is connected with an increase in the lengths of the longest N–N bonds in the molecules. These lengths are directly proportional to the activation energies of the low-temperature thermal decomposition of the pure nitramines in all states of matter for this reaction. Raising the energy content also leads to reductions in the rate constants of thermal decomposition. Both of these facts are in contrast to expectations and also with similar published findings concerning thermal decomposition of nitramines in solution, which can be explained by the solvation effect and termination of the emerging aza-radicals in solutions. The calculated dissociation energies of the weakest N–N bonds yielded a relatively good reciprocal conformity with the lengths of the longest N–N bonds of the nitramines studied, especially when using the UB3LYP/6-31G* method. The relationship between the impact sensitivity of these nitramines and the lengths of their longest N–N bond is not completely clear. Such lengths cannot be a measure of impact reactivity, because the longest N–N bond might be stabilized in some cases by suitable intermolecular interactions with adjacent molecules in the crystal lattice.
Rocznik
Strony
169--200
Opis fizyczny
Bibliogr. 83 poz., rys., tab.
Twórcy
  • Faculty of Chemical Technology, University of Pardubice, CZ-532 10 Pardubice, Czech Republic
autor
  • TÜBİTAK SAGE, Mamak, 06261 Ankara, Turkey
  • Faculty of Chemical Technology, University of Pardubice, CZ-532 10 Pardubice, Czech Republic
Bibliografia
  • [1] Jalovy, Z.; Zeman, S. Relationship between the Length of the Longest N-N Bonds and Activation Energies of Low-temperature Thermolysis of Nitramines. Int. Annual Conf. ICT, Proc., 30th, Karlsruhe, 1999, 104/1-104/9.
  • [2] Goncharov, T.K.; Dubikhin, V.V.; Nazin, G.M.; Prokudin, V.G.; Aliev, Z.G. Thermal Decomposition of cis-2,4,6,8-Tetranitro-1H,5H-2,4,6,8-tetraazabicyclo[3.3.0] octane. Russ. Chem. Bull., Int. Edition 2011, 60(6): 1138-1143.
  • [3] Nazin, G.M.; Prokudin, V.G.; Dubikhin, V.V.; Aliev, Z.G.; Zbarskii, V.L.; Yudin, N.V.; Shastin, A.V. Relation between the N–NO2 Bond Length and Stability of the Secondary Nitramines. Russ. J. General Chem. 2013, 83(6): 1071-1076.
  • [4] Licht, H.-H. Performance and Sensitivity of Explosives. Propellants, Explos. Pyrotech. 2000, 25: 126-132.
  • [5] Elbeih, A.; Jungová, M.; Zeman, S.; Vávra, P.; Akštein, Z. Explosive Strength and Impact Sensitivity of Several PBXs Based on Attractive Cyclic Nitramines. Propellants, Explos. Pyrotech. 2012, 37(3): 329-334.
  • [6] Zeman, S.; Jungová, M. Sensitivity and Performance of Energetic Materials. Propellants, Explos. Pyrotech. 2016, 41(3): 426-451.
  • [7] SPARTAN 06. Wavefunction Inc., Irvine CA, USA, 2008.
  • [8] Shao, J.; Cheng, X.; Yang, X. Density Functional Calculations of Bond Dissociation Energies for Removal of the Nitrogen Dioxide Moiety in some Nitroaromatic Molecules. J. Mol. Struct. (THEOCHEM) 2005, 755: 127-130.
  • [9] Atalar, T.; Jungová, M.; Zeman, S. A New View of Relationships of the N–N Bond Dissociation Energies of Cyclic Nitramines. Part II. Relationships with Impact Sensitivity. J. Energ. Mater. 2009, 27, 200–216.
  • [10] Ye, S.; Tonokura, K.; Koshi, M. Energy Transfer Rates and Impact Sensitivities of Crystalline Explosives. Combust. Flame 2003, 132: 240-246.
  • [11] Kočí, J.; Zeman, V.; Zeman, S. Electric Spark Sensitivity of Polynitro Compounds. Part V. A Relationship between Electric Spark and Impact Sensitivities of Energetic Materials. Chin. J. Energ. Mater. (Hanneng Cailiao) 2001, 9(2): 60-65.
  • [12] Zeman, S.; Krupka, M. New Aspects of Impact Reactivity of Polynitro Compounds. Part III.. Impact Sensitivity as a Function of the Intermolecular Interactions. Propellants, Explos. Pyrotech. 2003, 28: 301-307.
  • [13] Simpson, R.I.; Garza, R.G.; Foltz, M.F.; Ornellas, D.I.; Utriev, P.A. Characterization of TNAZ. Lawrence Livermore National Lab. Report UCRL-ID-119572, 1994.
  • [14] Storm, C.B.; Stine, J.R.; Kramer, J.F. Sensitivity Relationships in Energetic Materials. In: Chemistry and Physics of Energetic Materials. (Bulusu, S.N., Ed.) Kluwer Acad. Publs., Dordrecht, 1990, pp. 605-639.
  • [15] Willer, R.L. Synthesis and Characterization of High-Energy Compounds. I. trans-1,4,5,8-Tetranitro-1,4,5,8-tetraazadecalin (TNAD). Propellants, Explos. Pyrotech. 1983, 8(3): 65-69.
  • [16] Vágenknecht, J.; Mareček, P.; Trzciński, W. Sensitivity and Performance Properties of TEX Explosives. J. Energ. Mater. 2002, 20: 45-253.
  • [17] Ou, Y.; Wang, C.; Pan, Z.; Chen, B. Sensitivity of Hexanitrohexaazaisowurtzitane. Chin. J. Energ. Mater. (Hanneng Cailiao) 1999, 7: 100-102.
  • [18] Sheldrick, G.M. SHELXT – Integrated Space-Group and Crystal-Structure Determination. Acta Cryst., A71 2015: 3-8.
  • [19] The Director, CCDC, 12 Union Road, Cambridge CB2 1EY, UK (e-mail: deposit@ ccdc.cam.ac.uk or www: http://www.ccdc.cam.ac.uk).
  • [20] Zeman, S. Characteristics of Thermal Decomposition of Energetic Materials in a Study of their Initiation Reactivity. In: Handbook of Thermal Analysis and Calorimetry, Recent Advances in Techniques and Applications. (Vyazovkin, S.; Koga, N.; Schick, C., Eds.) Vol. 6, 2nd ed., Chapter 14, Eslsevier, Amsterdam, 2018, pp. 573-612; ISBN 978-0-444-64062-8.
  • [21] Andreev, K.K. Termicheskoe razlozheniye i goreniye vzryvchatykh veschestv (in Russian, editorial transl.: Thermal Decomposition and Combustion of Explosives.) Izdat. Nauka, Moscow, USSR, 1966. Russian UDK: 541.427.6:541.126+542.92. Transl. as U.S. Govt. Rep. AD-693600. Publisher: NTIS,Springfield, IL, USA, 1969.
  • [22] Zeman, S. Sensitivities of High Energy Compounds. In: Structure and Bonding – High Energy Density Compounds. (Mingos, D.M.P., Ser. Ed.; Klapötke, T.M., Vol. Ed.), Vol. 125, Springer, Heidelberg, 2007, pp. 195-271; ISBN 0081-5993.
  • [23] Chukanov, N.V.; Korsunskii, B.L.; Dubovitskii, F.I.; Anan’ina, O.V. IRSpectroscopic Determination of Monomolecular Dissociation Activation Energies. N-Nitrodimethylamine. (in Russian) Dokl. Akad. Nauk SSSR 1983, 265: 1445-1447.
  • [24] Zeman, S. Relationship between the Arrhenius Parameters of the Low-Temperature Thermolysis and the Carbon-13 and Nitrogen-15 Chemical Shifts of Nitramines. Thermochim. Acta 1992, 202: 191-200.
  • [25] Grice, M.E.; Habibollahzadeh, D.; Politzer, P. Calculated Structure, Heat of Formulation and Decomposition Energetics of 1,3-Dinitro-1,3-diazacyclobutane. J. Chem. Phys. 1995, 100: 4706-4707.
  • [26] Löbbecke, S.; Bohn, M.A.; Pfeiland, A.; Krause, H. Thermal Behavior and Stability of HNIW (CL-20). Int. Annual Conf. ICT, Proc., 29th, Karlsruhe, 1998, 145/1-145/15.
  • [27] Sitonina, G.V.; Korsunskii, B.L.; Pyatakov, N.F.; Shvayko, V.G.; Abdrakhmanov, I. Sh.; Dubovitskii, F.I. Kinetics of the Thermal Decomposition of N,N’-Dinitropiperazine and 1,3-Dinitro-1,3-diazacyclopentane. (in Russian) Izv. Akad. Nauk SSSR, Ser. Khim. 1979, (2): 311-314.
  • [28] Klasovitý, D.; Zeman, S.; Růžička, A.; Jungová, M.; Roháč, M. cis-1,3,4,6-Tetranitrooctahydroimidazo-[4,5-d]imidazole (BCHMX), its Properties and Initiation Reactivity. J. Hazard. Mater. 2009, 164: 954-961.
  • [29] Boileau, J.; Wimmer, E.; Gilardi, R.; Stinecipher, M.M.; Gallo, R.; Pierrot. M. Structure of 1,4-Dinitroglycoluril. Acta Cryst. 1988, C44: 696-699.
  • [30] Stepanov, R.S.; Kruglyakova, L.A.; Astakhov, A.M. Thermal Decomposition of some Quinary Cyclic Nitramines. (in Russian) Zh. Obsh. Khim. 2006, 76: 2061-2062.
  • [31] Burov, Yu. M.; Nazin, G.M. Effect of Structure on the Decay Rate of Secondary Nitramines in the Gas Phase. (in Russian) Kinet. Katal. 1982, 23: 12-17.
  • [32] Maksimov, Yu.Ya. Thermal Decompositions of Hexogen and Octogen. (in Russian) Tr. Mosk. Khim.-Tekhnol. Inst. im. Mendeleeva 1967, 53: 73-84.
  • [33] Janney, J.; Rogers, R.N. Thermochemistry of Mixed Explosives. Thermal Anal., Int. Conf., Proc. Part 2, 7th, Kingston, Canada, August 1982, p. 1426; US Govt. Report DE 820 12 149, 1982.
  • [34] Robertson, A.J.B. Thermal Decomposition of Explosives. II. Cyclotrimethylenetrinitramine (Cyclonite) and Cyclotetramethylenetetranitramine. Trans. FaradaySoc. 1949, 45: 85-93.
  • [35] Oyumi, Y. Melt Phase Decomposition of RDX and Two Nitrosamine Derivatives. Propellants, Explos. Pyrotech. 1988, 13: 42-47.
  • [36] Zeman, S. Analysis and Prediction of the Arrhenius Parameters of Low-Temperature Thermolysis of Nitramines by Means of the 15N NMR Spectroscopy. Thermochim. Acta 1999, 333: 121-129.
  • [37] Results of Goshgarian, B.B., cited in paper by Brill, T.B.; Karpowicz, R.J. Solid Phase Transition Kinetics. The Role of Intermolecular Forces in the Condensed-Phase Decomposition of Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine. J. Phys. Chem. 1982, 86: 4260-4265.
  • [38] Rogers, R.N. Differential Scanning Calorimetric Determination of Kinetics Constants of Systems that Melt with Decomposition. Thermochim. Acta 1972, 3: 437-447.
  • [39] Belyaeva, M.S.; Klimenko, G.K.; Babaytseva, L.T.; Stolyarov, P.N. Factors Determining the Thermal Stability of Cyclic Nitramines in a Crystalline State. (in Russian) Khim. Fiz. Protsessov Goreniya i Vzryva. Kinetika Khim Reaktsii, Acad. Sci. USSR: Chernogolovka, 1977, pp. 47-50.
  • [40] Kohno, Y.; Ueda, K.; Imamura, A. Molecular Dynamics Simulations of Initial Decomposition Process on the Unique N−N Bond in Nitramines in the Crystalline State. J. Phys. Chem. 1996, 100: 4701-4712.
  • [41] Murray, J.S.; Politzer, P. Computational Studies of Energetic Nitramines. In: NATO ASI Series – Chemistry and Physics of Energetic Materials. (Bulusu, S.N., Ed.), Vol. 309, Kluwer Acad. Publishers, Dordrecht/Boston/London, 1990, pp. 175-193; ISBN 978-94-009-2035-4.
  • [42] Archibald, T.G.; Gilardi, R.; Baum, K.; George, C. Synthesis and X-Ray Crystal Structure of 1,3,3-Trinitroazetidine. J. Org. Chem. 1990, 55: 2920-2924.
  • [43] Politzer, P.; Murray, J.S.; Lane, P.; Sjoberg, P.; Adolph, H. Shock-Sensitivity Relationships for Nitramines and Nitroaliphatics. Chem. Phys. Lett. 1991, 181: 78-82.
  • [44] Stepanov, R.S.; Kruglyakova, L.A.; Astakhov, A.M. Kinetics of Thermal Decomposition of Some Nitramines with Two Condensed Quinary Cycles. (in Russian) Zh. Obsh. Khim. 2006, 76: 2063-2063.
  • [45] Hu, R.; Yang, Z.; Liang, Y. The Determination of the Most Probable Mechanism Function and Three Kinetic Parameters of Exothermic Decomposition Reaction of Energetic Materials by a Single Non-Isothermal DSC Curve. Thermochim. Acta 1988, 123: 135-151.
  • [46] Stepanov, R.S.; Kruglyakova, L.A.; Rogozin, M.V.; Astachov, A.M. Influence of Structure on the Thermal Decomposition Rate of some Cage Nitramines. Int. Annual Conf. ICT, Proc., 35th, Karlsruhe, 2004, 59/1-59/13.
  • [47] Stepanov, R.S.; Kruglyakova, L.A. Structure/Kinetics Relationships of Thermodestruction of Some Framework Nitramines. Russ. J. Gen. Chem. 2010, 80: 16-322.
  • [48] Östmark, H.; Bergman, H.; Sjöberg, P. Sensitivity and Spectroscopic Properties of the β- and ε-Polymorphs of HNIW. Int. Symp. Energetic Materials Technology, Proc., Phoenix, Arizona, 1995; pp. 76-81.
  • [49] Ou, Y.; Chen, B.; Jia, H.; Xu, Y.; Pan, Z. Structural Identification of Hexanitrohexaazaisowurtzitane. Chin. J. Energ. Mater. (HanNeng CaiLiao) 1995, 3(3): 1-8.
  • [50] Korsounskii, B.L.; Nedelko, V.V.; Chukanov, N.V.; Larikova, T.S.; Volk, F. Kinetics of Thermal Decomposition of Hexanitrohexaazaisowurtzitane. Russ. Chem. Bull. 2000, 49(5): 812-818.
  • [51] Nedelko, V.V.; Chukanov, N.; Raevskii, A.V.; Korsounskii, B.L.; Larikova, T.S.; Kolesova, O.I. Comparative Investigation of Thermal Decomposition of Various Modifications of Hexanitrohexaazaisowurtzitane (CL-20). Propellants, Explos. Pyrotech. 2000, 25: 255-259.
  • [52] Novikov, S.S.; Pyatakov, N.F.; Rysakova-Romashkan, O.P.; Vyunova, I.B. Eksperimentalnye issledovaniya goreniya lineynykkh polinitraminov. (in Russian, editorial transl.: Experimental Observation of Burning of the Linear Polynitramines.) Dokl. Akad. Nauk SSSR; 1998, 362(3): 362-364.
  • [53] Karaghiosoff, K.; Klapötke, T.M.; Michailovski, A.; Holl, G. 4,10-Dinitro-2,6,8,12-tetraoxa-4,10-diazaisowurtzitane (TEX): A Nitramine with an Exceptionally High Density. Acta Cryst. 2002, C58: 0580-0581.
  • [54] Gatilov, Yu.V.; Rybalova, T.V.; Efimov, O.A.; Lobanova, A.A.; Sakovich, G.V.; Sysolyatin, S.V. Molecular and Crystal Structure of Polycyclic Nitramines. J. Struct. Chem. 2005, 46(3): 566-571.
  • [55] Kostikova, L.M.; Miroshnichenko, E.A.; Matyushin, Y.N. The Energies of Dissociation Bonds and Efficient Energies of Interaction in Nitroamines. Int. Annual Conf. ICT, Proc., 31st, Karlsruhe, 2000, 50/1-50/11.
  • [56] McKenney, R.L., Jr; Floyd, T.G.; Stevens, W.E.; Archibald, T.G.; Marchand, A.P.; Sharma, G.V. Synthesis and Thermal Properties of 1,3-Dinitro-3-(1′,3′-dinitroazetidin-3′-yl)azetidine (TNDAZ) and its Admixtures with 1,3,3-Trinitroazetidine (TNAZ). J. Energ. Mater. 1998, 16: 199-235.
  • [57] Rice, B.M.; Pai, S.V.; Hare, J. Predicting Heats of Formation of Energetic Materials Using Quantum Mechanical Calculations. Combust. Flame 1999, 118: 445-458.
  • [58] Elbeih, A.; Zeman, S.; Jungová, M.; Vávra, P. Attractive Nitramines and Related PBXs. Propellants, Explos. Pyrotech. 2013, 38(3): 379-385.
  • [59] Study of Semenov Institute of Chemical Physics, Russia, 1998, In: ICT – Database of Thermochemical Values (Bathelt, H.; Volk, V.; Weindel, M., Eds.). Version 7.0. Fraunhofer Inst. Chem. Technol., Pfinztal, Germany, 2004.
  • [60] Doherty, R.M.; Simpson, R.L. A Comparative Evaluation of Several Insensitive High Explosives. Int. Annual Conf. ICT, Proc., 28th, Karlsruhe, 1997, 32/1-32/23.
  • [61] Kozyrev, N.V.; Sysolyatin, S.V.; Sakovich, G.V. Preparation of Ultrafine Diamonds from Fused Mixtures of TNT with Polycyclic Nitramines. (in Russian) Fiz. Goreniya Vzryva 2006, 42(4): 131-134.
  • [62] Golfier, M.; Graindorge, H.; Longevialle, Y.; Mace, H. New Energetic Molecules and Their Applications in Energetic Materials. Int. Annual Conf. ICT, Proc., 29th, Karlsruhe, 1998, 3/1-3/18.
  • [63] Molt, R.W., Jr; Bartlett, R.J.; Watson, T., Jr.; Bazanté, A.P. Conformers of CL-20 Explosive and ab Initio Refinement Using Perturbation Theory: Implications to Detonation Mechanisms. J. Phys. Chem., A 2012, 116: 12129-12135.
  • [64] Zhao, Q.; Zhang, S.; Li, Q.S. The Influence of Ring Strain and Conjugation on the Reaction Energies of the NO2 Fission of Nitramines: a DFT Study. Chem. Phys. Lett. 2005, 407(1-3): 105-109.
  • [65] Shishkov, I.F.; Vilkov, L.V.; Kolonits, M.; Roysondai, B. The Molecular Geometries of Some Cyclic Nitramines in the Gas Phase. Struct. Chem. 1991, 2: 57-64.
  • [66] Bolotina, N.B.; Hardie, M.; Speer, R.L., Jr.; Pinkerton, A.A. Energetic Materials: Variable-Temperature Crystal Structures of γ- and ε-HNIW Polymorphs. J. Appl. Cryst. 2004, 37: 808-814.
  • [67] Zeman, S.; Liu, N.; Hussein, A.K. Crystal Lattice Free Volume and Thermal Decomposition of Nitramines. Def. Technol 2018, 15: 51-57.
  • [68] Zeman, S.; Yan, Q-L.; Vlček, M. Recent Advances in the Study of the Initiation of Energetic Materials Using Characteristics of Their Thermal Decomposition, Part I. Cyclic Nitramines. Cent. Eur. J. Energ. Mater. 2014, 11(2): 173-189.
  • [69] Zeman, S.; Friedl, Z.; Bartošková, M.; Yan, Q-L. Comparison with Molecular Surface Electrostatic Potential and Thermal Reactivity of Nitramines. Chin. J. Energ. Mater. (HanNeng CaiLiao) 2015, 23(12): 1155-1161.
  • [70] Zeman, S.; Liu, N. A New Look on the Electric Spark Sensitivity of Nitramines. Def. Technol. 2020, 16(1): 10-17.
  • [71] Zeman, S.; Liu, N.; Jungová, M.; Hussein, A.K.; Yan, Q-L. Crystal Lattice Free Volume in a Study of Initiation Reactivity of Nitramines: Impact Sensitivity. Def. Technol. 2018, 14(2): 93-98.
  • [72] Stepanov, R.S.; Kruglyakova, L.A.; Astakhov, A.M. Effect of the Structure of Cyclic N-Nitramines on the Rate and Mechanism of Their Thermolysis. Russ. J. General. Chem. 2007, 77(7): 1293-1299.
  • [73] Jungová, M.; Zeman, S.; Yan, Q-L. Recent Advances in the Study of the Initiation of Nitramines by Impact Using Their 15N NMR Chemical Shifts. Cent. Eur. J. Energ. Mater. 2014, 11(3): 383-393
  • [74] Zeman, S.; Kočí, J.; Majzlík, J. Electric Spark Sensitivity of Polynitro Arenes. Part I. A Comparison of Two Instruments. Cent. Eur. J. Energ. Mater. 2007, 4(3): 15-24.
  • [75] Ariza, X.; Bou, V.; Vilarrasa, J.; Tereshko, V.; Campos, J.L. A Brief Synthesis of [3-15N]-3‘-Azido-3‘-deoxythymidine (N3-labeled AZT) via 3-nitro-AZT. Angew. Chem. 1994, 106(23/24): 2535-2437.
  • [76] House, J.E. Principles of Chemical Kinetics. 2nd ed., Elsevier, Amsterdam, 2007, pp. 177-185; ISBN 9780123567871.
  • [77] Zeman, S. Kinetic Data from Low-Temperature Thermolysis in the Study of the Microscopic Initiation Mechanism of the Detonation of Organic Polynitrocompounds. Thermochim. Acta 1981, 49(2-3): 219-246.
  • [78] Zeman, S. Kinetic Compensation Effect and Thermolysis Mechanisms of Organic Polynitroso and Polynitro Compounds. Thermochim. Acta 1997, 290(2): 199-217.
  • [79] Urbański, T.; Buźniak, J. Influence of Aromatic Nitro Compounds on Retarding of Radical Polymerization. Part III. Influence of Some Methyl Derivatives of Nitrobenzene, m-Dinitrobenzene, and sym-Trinitrobenzene. Rocz. Chem. (Ann. Soc. Chim. Polonorum) 1971, 45(12): 1841-1846.
  • [80] Urbański, T.; Buźniak, J. Effect of Aromatic Nitro-Compounds on the Inhibition of Radical Polymerization. I. Effect of Nitrobenzene. Rocz. Chem. (Ann. Soc. Chim. Polonorum) 1970, 15(7): 333-337.
  • [81] Zeman, S. Thermal Stabilities of Polynitroaromatic Compounds and their Derivatives. Thermochim. Acta 1979, 31: 269-283.
  • [82] Zeman, S. Relationship between Detonation Characteristics and 15N NMR Chemical Shifts of Nitramines. J. Energ. Mater. 1999, 17: 305-330.
  • [83] Zeman, S.; Friedl, Z. Relationship between Electronic Charges at Nitrogen Atoms of Nitro Groups and Thermal Reactivity of Nitramines. J. Thermal Anal. Calorim. 2004, 77: 217-224.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d9e31bc3-31d8-412c-bd8f-44bff30c2b25
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.